

Plant Bacteriology Bacterial Classification

Compiled by N. Hassanzadeh

Version 4.25

January 1, 2025

Website Address: http://www.phytobacteriology.com

Contact address

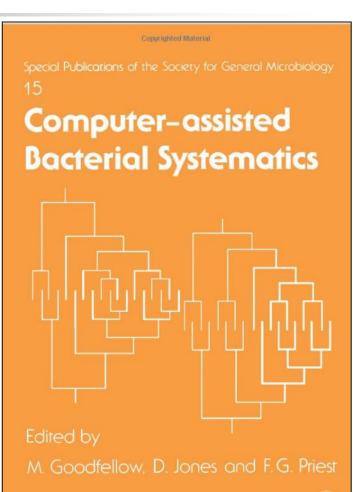
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science & Research Branch, Islamic Azad University, Tehran-Iran.
- P.O. Box: 14155/775, Postal Code: 1477893855
- Branch website: www.srbiau.ac.ir
- e-mail addresses:
- hasanzadehr@srbiau.ac.ir
- hasanzadehr@yahoo.com

- Books on plant bacterial systematics
- Proceedings/Reviews/Monographs/Book chapters/PowerPoints/PDF files
- Websites on plant pathogenic bacteria
- The history
- Aristotle first hierarchy
- Cohn initial bacteria classification system
- Three disciplines of prokaryote taxonomy:
- 1. Identification
- 2. Nomenclature
- 3. Classification
- A. The Nomenclature Codes
- The Code (ICSB, International Committee on Systematic Bacteriology and now ICSP)
- Approved Lists of Bacterial Names (1980 and 1989)
- The Standards
- Validation Lists
- Notification Lists
- Comprehensive Lists
- The other codes (BioCode, PhyloCode)
- The Code Statutes
- International Society for Plant Pathology (ISPP)

- International Committee on Systematic Prokaryotes (ICSP)
- List of Some ICSP Taxonomic subcommittees
- The Judicial Commission
- Ad Hoc committees
- The Code: Principles, Rules and Recommendations
- Minimal standards for the description of new taxa
- Binomial nomenclature
- Culture Collections of Prokaryotes
- Virtual Museum of Bacteria
- **B.** Classification
- Prokaryotes: The History
- Characteristics used in taxonomy
- Classification systems
- Phenetic system vs. Phylogenetic system
- **1.** Phenetic Classification
- > Two kingdoms (Bergey's Mauals, 1923-1957)
- Five Kingdom system (Whittaker, 1969)
- 2. Phylogenetic Classification
- The Woese three domain system (1977): The three domain system
- The Cavalier-Smith megaclassification (2002): The two Empires system
- The Ruggiero et al., 2015: Two superkingdoms: Two superkingdoms system

- Phenetic Classification (Classical/Numerical Taxonomy)
- Polyphasic Classification (Classical plus Molecular Taxonomy)
- Characteristics used in polyphasic taxonomy
- Typing methods
- Modern theories of the cell origin and evolution: Phenotype, Ribotype, Genotype
- Phenotypic Methods
- Genotypic Methods
- DNA base ratio (moles percent GC)
- DNA-DNA hybridization (DDH) studies
- DNA-RNA hybridization
- rRNA homology studies (Ribotyping: molecular fingerprinting)
- Chemotaxonomic methods
- Cell wall composition
- Cellular fatty acids
- Isoprenoid quinones (lipid molecules) in cell membrane
- Polyamines (organic compounds having more than two amino groups)
- Whole-cell protein analysis
- Other typing Methods
- Siderotyping

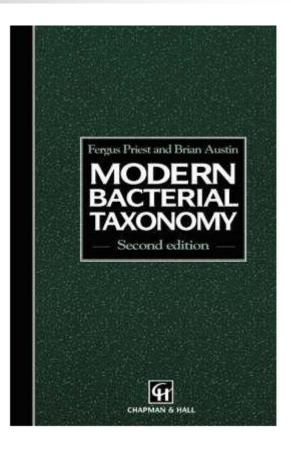
- Phylogenetic genes/markers
- **16S rRNA**
- 23S rRNA
- DNA sequences vs. proteins sequences
- Specific genes: *oprI*, *rpoD*, *gyrA*, *gyrB*, *lrp*
- New methods for description and classification of bacterial species
- Mulitlocus enzyme electrophoresis (MLEE)
- Multilocus sequence typing (MLST)
- eMLSA.net
- MLSA of major pathogens
- Pan-genome
- The species concepts in bacteria
- Speciation
- Types of bacterial diversity
- Problems with prokaryote species concept
- Evolution of bacterial plant pathogens
- Horizontal gene transfer (HGT)
- Pathogenicity islands
- TTSS protein sequences


- Polyphasic approach-The only solution for species definition
- Parameters used for species delineation
- Phenetic methods
- Mole % G+C and DNA/DNA Homology
- 16S rDNA sequences (signature sequences)
- DDH and 16S rRNA gene sequence similarity
- 16S-23S rDNA ITS
- Multilocus sequence typing (MLST)
- Average nucleotide identity (ANI)
- Comparison of ANI and DNA-DNA hybridization similarity
- Pan-genome sequences
- Ecology-based approaches (Ecotype Concept)
- Variation in ecological diversity
- The stable ecotype model
- Analysis of 16S rDNA sequences
- Steps of sequence analysis
- Sequencing and electropherogram (chromatogram)
- NCBI blast sequence alignment
- Sequence submission and deposition into NCBI GenBank
- Terminology-Glossary of general terms
- Selected References

Books on Bacterial Systematics

Plant Pathogenic Bacteria

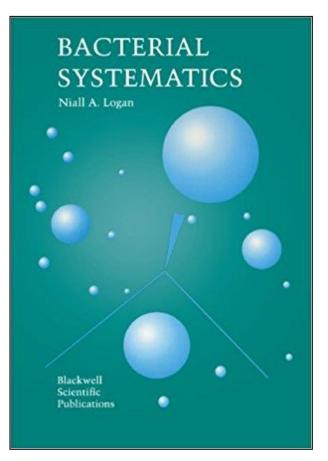
Computer-Assisted Bacterial Systematics


- Computer-Assisted Bacterial Systematics.
- Society for General Microbiology
- Edited by: M. Goodfellow,D. Jones and F. G. Priest
- Elsevier Ltd.
- **1985**
- 443 pp.

Modern Bacterial Taxonomy

Modern Bacterial Taxonomy

- Author: Kazuo Tsubota
- Chapman and Hall
- 1994
- 228 pp.



Bacterial Systematics

The first book on bacterial systematics at the undergraduate level

Bacterial Systematics

- Author: Niall A. Logan
- Blackwell Scientific Publications
- **1994**
- 263 pp.

Taxonomy of Prokaryotes

Taxonomy of Prokaryotes

- Volume 38 (Methods in Microbiology)
- by Fred Rainey and Aharon Oren
- Academic Press
- **2011**
- 484 pp.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

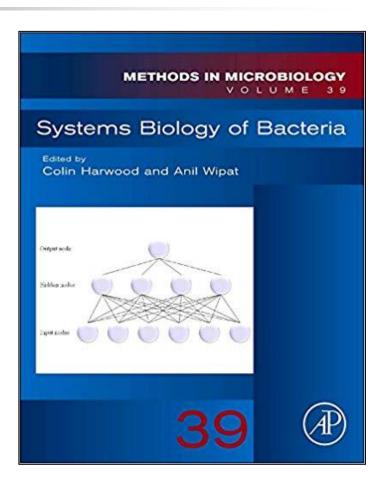
Bacterial Diversity and Systematics (F.E.M.S. Symposium Series Book 75)

- Bacterial Diversity and Systematics (F.E.M.S. Symposium Series Book 75)
- by y F.G. Priest, Alberto Ramos-Cormenzana and B.J. Tindall (Editors)
- Springer
- **2012**
- **556 pp.**

FEMS Symposium No. 75

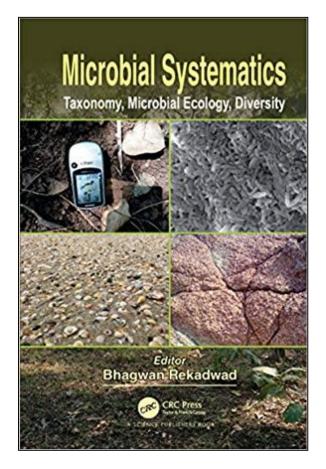
BACTERIAL DIVERSITY

AND SYSTEMATICS

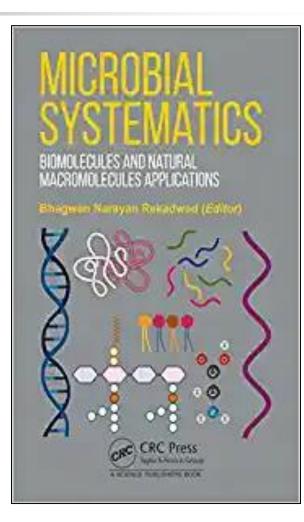

EDITED BY

FERGUS G. PRIEST ALBERTO RAMOS-CORMENZANA B. J. TINDALL

Taxonomy of Prokaryotes


Taxonomy of Prokaryotes

- Volume 39 (Methods in Microbiology)
- by Colin Harwood and Anil Wipat
- Academic Press
- **2013**
- 200 pp.


Microbial Systematics: Taxonomy, Microbial Ecology, Diversity

- Microbial Systematics: Taxonomy, Microbial Ecology, Diversity
- by Bhagwan Rekadwad
- CRC Press;
- **2020**
- 218 pp.

Microbial Systematics: Biomolecules and Natural Macromolecules Applications

- Microbial Systematics: Biomolecules and Natural Macromolecules Applications
- by Bhagwan Narayan Rekadwad
- CRC Press
- **2023**
- 230 pp.

Proceedings/Reviews/Monographs/Book chapters/PowerPoints/PDF files

Plant Pathogenic Bacteria

- Abedon, S. 2011. Scope and history of microbiology. Chapter10 ID and classification of prokaryotes(Nester10) 2.51 MB. 33 slides.
- Bedone, S.T. Power point presentations and lecture notes. The Ohio State University.
- Britigan, B. E. 2002. Iron: Mechanisms of Pro-oxidant Behavior, Cellular Uptake, and Organism Survival Skills. 979 KB.
- Bull, C.T. 2013. Bacterial taxonomy for the unintentional taxonomist. USDA-ARS, Salinas, CA USA. 27 slides.
- Carro, L. And I. Nouioui.2017. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiology, 3 (3): 383-412.
- Chester R. Cooper, Jr. 2004. BIOL 3702 Lecture Outline Chapter 19 Microbial Taxonomy and Phylogeny. 7pp.
- Coenye, T. 2003. Modern bacterial systematics in practice : Polyphasic taxonomy of the *Burkholderia cepacia* complex. 818 kB.
- Coenye, T. 2003. Microbial genomics & the study of prokaryotic diversity. Ghent University, Belgium Laboratory for Pharmaceutical Microbiology. 113 slides.
- De La Fuente, Leonardo.2009. Introducción. Auburn University. 82 slides.
- DuBois, J.2011. Introduction to bioinorganic chemistry of the d-block. Bio Iron. d-block chemistry in action Lecture 11. 1.99 MB.
- El-Safey Mohmad El-Safey, 2011. Introduction of bacterial taxonomy. 73 pp.
- Ghenghesh ,K.S. 2015. bacterial taxonomy. 26 slides.

- Hawksworth, D.L. 2010. Terms used in Bionomenclature: The naming of organisms (and plant communities). Web application at http://www.gbif.org/communications/resources/print-andonlineresources/bionomenclature/218 pp.
- Johnson, N. C. *Agrobacterium*, Plant-Microbe Interactions, Lecture 22. 0.98 MB.
- Karki, G. 2017. Classification of bacteria. www.onlinebiologynotes.com.
- Parkinson, N. Identifying Relatedness Between Bacterial Plant Pathogens.
 Parkinson_MolID_CSL_1.pdf.
- Portier, P. 2009. French Collection for Plant-pathogenic Bacteria. COST 873 practical workshop Sept 24th 2009. 1.90 MB.
- Priest, F.G., Alberto Ramos-Cormenzana and B. J.Tendall. 2013. Bacterial Diversity and Systematics (F.E.M.S. Symposium Series). 331pp.
- Rescott *et al.*, 2005. Microbiology- Unit Four Phylogeny of Bacteria, Prokaryotes: Bacterial Genetic Systems.
- Vandamme, P. ?. Molecular taxonomy: the bacterial species concept and polyphasic taxonomy revisited. September 12, Lyngby, Denmark. 48 slides.
- Vandamme, P. 2013. Introduction to polyphasic taxonomy. Third European Congress on Microbial Biofilms. 64 slides.

- Hawksworth, D.L. 2010. Terms used in Bionomenclature: The naming of organisms (and plant communities). Web application at http://www.gbif.org/communications/resources/print-andonlineresources/bionomenclature/218 pp.
- Johnson, N. C. *Agrobacterium*, Plant-Microbe Interactions, Lecture 22. 0.98 MB.
- Karki, G. 2017. Classification of bacteria. www.onlinebiologynotes.com.
- Parkinson, N. Identifying Relatedness Between Bacterial Plant Pathogens.
 Parkinson_MolID_CSL_1.pdf.
- Portier, P. 2009. French Collection for Plant-pathogenic Bacteria. COST 873 practical workshop Sept 24th 2009. 1.90 MB.
- Priest, F.G., Alberto Ramos-Cormenzana and B. J.Tendall. 2013. Bacterial Diversity and Systematics (F.E.M.S. Symposium Series). 331pp.
- Rescott *et al.*, 2005. Microbiology- Unit Four Phylogeny of Bacteria, Prokaryotes: Bacterial Genetic Systems.
- Vandamme, P. ?. Molecular taxonomy: the bacterial species concept and polyphasic taxonomy revisited. September 12, Lyngby, Denmark. 48 slides.
- Vandamme, P. 2013. Introduction to polyphasic taxonomy. Third European Congress on Microbial Biofilms. 64 slides.

- National Institutes of Health. 2020. Classification of 16S rRNA reads is improved using a niche-specific database constructed by near-full length sequencing. 28 pp.
- Berman, H. 2021. Bacterial species in the age of next-generation sequencing. American Society for Microbiology.
- Janda, J. M.2021. Taxonomic Classification of Bacteria. In: Lorrence H Green, Emanuel Goldman, eds. <u>Practical Handbook of Microbiology</u>, CRC Press. 975 pp.
- Jian-Yu Jiao, Rashidin Abdugheni et al., 2024. Advancements in prokaryotic systematics and the role of Bergey's International Society for Microbial Systematics addressing challenges in the meta-data era. National Science Review, Volume 11, Issue 7, nwae168.

Bacterial Taxonomy Websites

Plant Pathogenic Bacteria

The old front page of the ISPP website International Society for Plant Pathology


 The old front page of the ISPP website that listed the names of the all plant pathogenic bacteria.

Old version of the ISPP website

The new first page of the ISPP website International Society for Plant Pathology

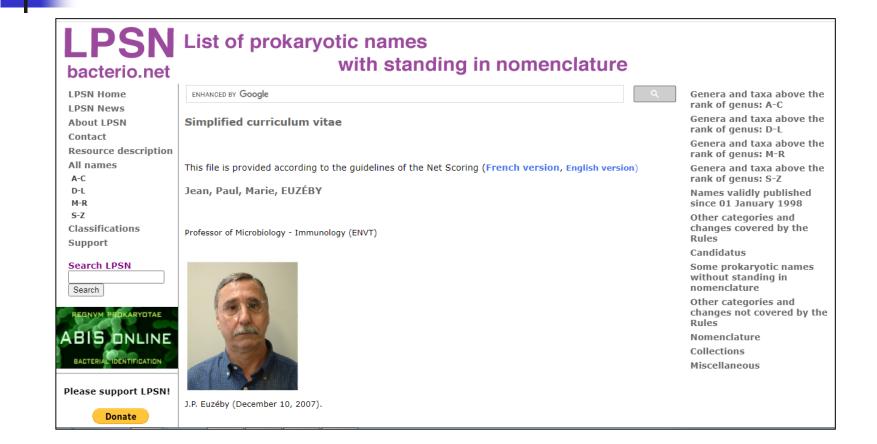
 Currently, the first page of the ISPP website that has removed the names of the bacteria from its site.

New homepage of ISPP website, 2023

LPSN is the most complete and authoritative source for prokaryotic nomenclature History of LPSN

- Jean P. Euzéby era (1997-2013). Information on the original author of LPSN, Jean P. Euzéby, is found in his CV in the archive, which also contains a copy of the first version of this website. LPSN as well-known internet site was launched by Jean in 1997.
- 2. Aidan C. Parte era (2013-2020). Information on the history of LPSN during this period is found on the Changelog page. The entire website has been archived as of November 2019, including an overview.
- LPSN-DSMZ era (since 2020). In autumn 2019, Aidan C. Parte joined forces with staff members of the Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH to create a website based on a completely new database implementation, which was originally developed for the Type-Strain Genome Server or TYGS.
- Data from LPSN were imported into that database together with data from Prokaryotic Nomenclature Up-to-date or PNU. PNU served essentially the same purpose as LPSN but covered fewer taxonomic categories. Please see the <u>Changelog</u> page for ongoing modifications of LPSN.

LPSN is the most complete and authoritative source for prokaryotic nomenclature History of LPSN


- With the rise in actual and anticipated new prokaryotic names, the LPSN had become increasingly difficult to maintain, so a better technical and funding basis was sought. To that end, in November 2019, the LPSN was acquired by Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Germany.
- The DSMZ already had its Prokaryotic Nomenclature Up-to-date (PNU) service since 1993, and because there is significant overlap in the content of both sites, it was decided to merge the two services into a completely new one, still under the LPSN name, which has a higher profile in the community.
- On 17 February 2020, the new LPSN was launched at <u>https://lpsn.dsmz.de/</u>under a modified Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license (Parte *et al.*,2020).

List of Prokaryotic names with Standing in Nomenclature (LPSN) Creator by J.P. Euzéby

- The great gratitude and honor to Prof. Dr Jean Euzéby for his tireless work in providing the 'List of Prokaryotic Names with Standing in Nomenclature (LPSN)'.
- Since 1997, he has manually checked all issues of International Journal of Systematic and Evolutionary Microbiology (IJSEM) to extract the taxonomic information (such as new species, new combinations and emendations), classify it in an orderly manner and make it electronically available in LPSN.
- Furthermore, LPSN compiles information provided by:
- 1. the Taxonomic Outline of Bacteria and Archaea (TOBA),
- 2. the NCBI taxonomy,
- 3. the Taxonomic Outlines of the Bergey's Manual of Systematic Bacteriology, and
- 4. Silva and 'The All-Species Living Tree Project (LTP)'.

Yilmaz *et al.*,2014

List of Prokaryotic names with Standing in Nomenclature (LPSN) The old front page of the Euzéby website

Jean Paul Euzéby, founder of LPSN, is retired at the end of June 2013

List of Prokaryotic names with Standing in Nomenclature (LPSN) The old front page of the Euzéby website

· Genders of generic names - Three-letter code for abbreviations of generic names - Genera named after

Latin and neo-Latin adjectives or participial adjectives used as specific or subspecific epithets (J.P.

H.G. Trüper: Help! Latin! How to avoid the most common mistakes while giving Latin names to newly

• J.P. Euzéby & B.J. Tindall: Valid publication of new names or new combinations: making use of the

Conserved names of prokarvotic taxa - Rejected names of prokarvotic taxa

• R.E. Buchanan: Chemical terminology and microbiological nomenclature

personal names - Genera named after geographical names - Genera named after mythological figures -

LPSN Home

LPSN News About LPSN Contact **Resource description** All names A-C D-I M-R S-Z Classifications Support Search LPSN Google" Custom Search Search Infectious Disease

S * S learn more!

Ribo::on

Please support LPSN!

Risk group classification: European Community classification

Culture collections of prokaryotesNumber of published names

lassification of Cvanobacteria

Genera named after institutions

Requests for Opinions and Judicial Opinions

Longest and shortest prokaryotic names

Some papers about nomenclature

· Minimal standards for the description of new taxa

• B.J. Tindall: Misunderstanding the Bacteriological Code

• P.H.A. Sneath & Don J. Brenner: "Official" Nomenclature Lists

• Papers freely available in IJSEM Online (full text in HTML format)

Alterations to the Bacteriological Code (1990 Revision)

Definitions and abbreviations

Euzéby & B.J. Tindall)

Salmonella nomenclature

discovered prokaryotes

Validation Lists

Miscellaneous

Links

Nomenclature

Site founded in 1997 by Jean P. Euzéby

Genera and taxa above the rank of genus: A-C

Genera and taxa above the rank of genus: D-L

Genera and taxa above the rank of genus: M-R

Genera and taxa above the rank of genus: S-Z

Names validly published since 01 January 1998

Other categories and changes covered by the Rules

Candidatus

Some prokaryotic names without standing in nomenclature

Other categories and changes not covered by the Rules

Nomenclature

Collections

Miscellaneous

LPSN: Creator by J.P. Euzéby The old front page of the Euzéby website

LPSN News About LPSN Contact Resource description All names A-C D-L M-R S-Z Classifications Support Search LPSN Coogle[®] Custom Search

LABORATORIES Infectious Disease

Search

Ribo

🕓 🌞 🚳 learn more!

Please support LPSN!

Donate

Classification of Cyanobacteria

Nomenclature

- Definitions and abbreviations
- Alterations to the Bacteriological Code (1990 Revision)
- Genders of generic names Three-letter code for abbreviations of generic names Genera named after personal names - Genera named after geographical names - Genera named after mythological figures -Genera named after institutions
- Latin and neo-Latin adjectives or participial adjectives used as specific or subspecific epithets (J.P. Euzéby & B.J. Tindall)
- Requests for Opinions and Judicial Opinions
- Conserved names of prokaryotic taxa Rejected names of prokaryotic taxa
- Minimal standards for the description of new taxa
- Salmonella nomenclature
- Longest and shortest prokaryotic names

Some papers about nomenclature

- H.G. Trüper: Help! Latin! How to avoid the most common mistakes while giving Latin names to newly discovered prokaryotes
- R.E. Buchanan: Chemical terminology and microbiological nomenclature
- B.J. Tindall: Misunderstanding the Bacteriological Code
- J.P. Euzéby & B.J. Tindall: Valid publication of new names or new combinations: making use of the Validation Lists
- P.H.A. Sneath & Don J. Brenner: "Official" Nomenclature Lists
- Papers freely available in IJSEM Online (full text in HTML format)

Miscellaneous

- Culture collections of prokaryotes
- Number of published names
- Links
 - Risk group classification: European Community classification

Site founded in 1997 by Jean P. Euzéby

Genera and taxa above the rank of genus: A-C

Genera and taxa above the rank of genus: D-L

Genera and taxa above the rank of genus: M-R

Genera and taxa above the rank of genus: S-Z

Names validly published since 01 January 1998

Other categories and changes covered by the Rules

Candidatus

Some prokaryotic names without standing in nomenclature

Other categories and changes not covered by the Rules

Nomenclature

Collections

Miscellaneous

Dr. Aidan C Parte, Curator

List of Prokaryotic names with Standing in Nomenclature (LPSN) is a free to use service founded by Jean P. Euzéby in 1997 and later on maintained by Aidan C. Parte. Thank Dr. Aidan C. Parte for taking over Prof. Dr. Euzeby's tasks, and continuing the LPSN Resource (Yilmaz *et al.*,2013). The new front page of the Euzéby website LPSN was integrated into the DSMZ's Prokaryotic Nomenclature Up-to-date (PNU) database as an all-new service LPSN-DSMZ's website (https://lpsn.dsmz.de)

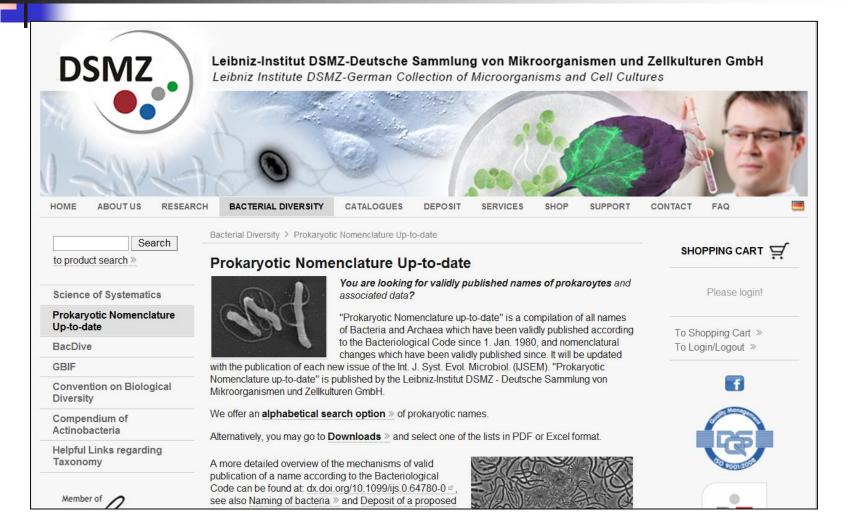
Prokaryotic names

- Since 2020, LPSN is maintained in its own platform.
- In February 2020, LPSN move from the previous platform to the DSMZ and now is located at <u>https://lpsn.dsmz.de</u> at the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures.
- Since decades the Leibniz Institute DSMZ offers the service Prokaryotic Nomenclature up-to-date (PNU), which provides a compilation of all names of Bacteria and Archaea that have been validly published according to the International Code of Nomenclature of Prokaryotes.

DSMZ website,2022;...

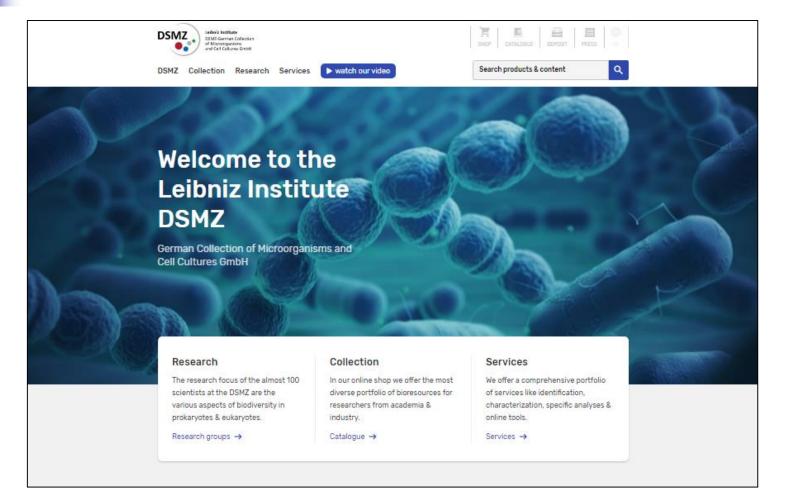
The new front page of the Euzéby website LPSN was integrated into the DSMZ's Prokaryotic Nomenclature Up-to-date (PNU) database as an all-new service LPSN-DSMZ's website (https://lpsn.dsmz.de)

	Search taxonomy Q	
LPSN .dsmz.de	LPSN - List of Prokaryotic names with Standing in Nomenclature	
Browse by rank	Founded in 1997 by Jean P. Euzéby.	
Advanced search	▼ About	
Subscribe	The List of Prokarvotic names with Standing in Nomenclature (LPSN) provides comprehensive information on the nomenclature of prokarvotes and r	
Main	The List of Prokaryotic names with Standing in Nomenclature (LPSN) provides comprehensive information on the nomenclature of prokaryotes and much more. Navigating LPSN is easy. LPSN is a free to use service founded by Jean P. Euzéby in 1997 and later on maintained by Aidan C. Parte.	
Navigation		
Nomenclature	As of February 2020, the regularly augmented LPSN database at DSMZ is the basis of this new LPSN service. The new database was implemented for the	
Etymology Collections	 Founded in 1997 by Jean P. Euzéby. ✓ About The List of Prokaryotic names with Standing in Nomenclature (LPSN) provides comprehensive information on the nomenclature of prokaryotes and much more. Navigating LPSN is easy. LPSN is a free to use service founded by Jean P. Euzéby in 1997 and later on maintained by Aidan C. Parte. 	
Copyright	Institute DSMZ, and was curated by Norbert Weiss, Manfred Kracht and Dorothea Gleim.	
FAQ	As of December 2023, LPSN is recognized as Global Core Biodata Resource.	
Submit		
Contact	► How to cite LPSN	
Statistics	N atest news	
Downloads		
	► Recent taxon names	


In February 2020, a new version of LPSN was published as a service of the Leibniz Institute DSMZ, thereby also integrating the Prokaryotic Nomenclature Up-to-date service. New LPSN-DSMZ's website is: https://lpsn.dsmz.de.

The new front page of the Euzéby website LPSN-DSMZ's website (https://lpsn.dsmz.de) Nomenclature

LPSN .dsmz.de	Search taxonomy	Q	
Browse by rank	Nomenclature	3 4 0	
Advanced search	K	∠",≚⊕	
Subscribe	▼ Preamble	G	
Main			
Introduction	There is no official classification of prokaryotes, but the names given to prokaryotes are regulated. The <i>International Code of Nomenclature of Bacteria (Bacteriological Code)</i> and its successors contain General Considerations,		
Navigation			
Nomenclature	Principles, Rules and Recommendations which govern the way in which the names of prokaryotes are to be u last revision of the Code is the cornerstone of prokaryotic nomenclature.	Jsed. The	
Etymology			
Collections	Principles of nomenclature	Ø	
Acknowledgements		Ũ	
Copyright		0	
FAQ	► Resources on LPSN	G	
Submit			
Contact	Publications about nomenclature	6,	
Statistics			
Downloads	Discontinued pages	I	


LPSN includes information on names, synonyms, publications, nomenclatural types and sequences.

DSMZ Prokaryotic Nomenclature Up-to-Date The old front page of the DSMZ website

The new front page of the DSMZ website

German Collection of Microorganisms and Cell Cultures GmbH

DSMZ

German Collection of Microorganisms and Cell Cultures GmbH The three main activities of DSMZ

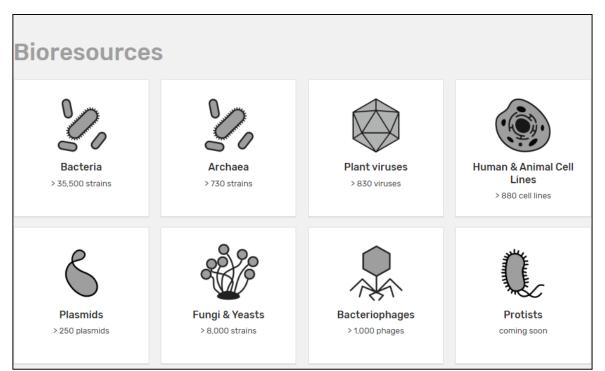
1. Research

 The research focus of the almost 100 scientists at the DSMZ are the various aspects of biodiversity in prokaryotes & eukaryotes.

2. Collection

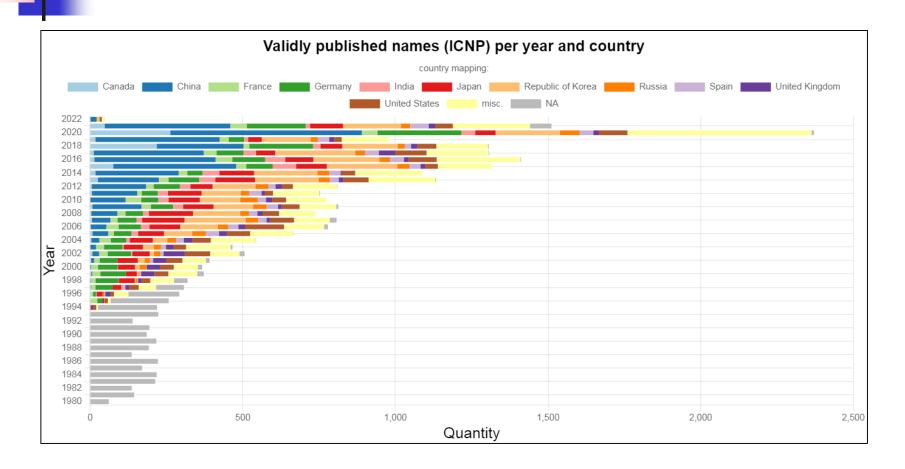
 In our online shop we offer the most diverse portfolio of bioresources for researchers from academia & industry.

3. Services:

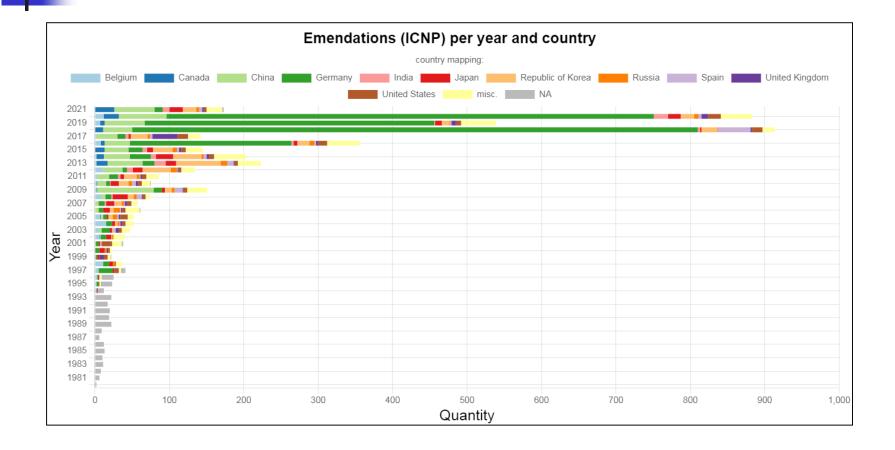

 We offer a comprehensive portfolio of services like identification, characterization, specific analyses & online tools.

GmbH is an abbreviation of the German phrase "Gesellschaft mit beschränkter Haftung,"which means "company with limited liability". portfolio: a range of investments held by a person or organization.

DSMZ

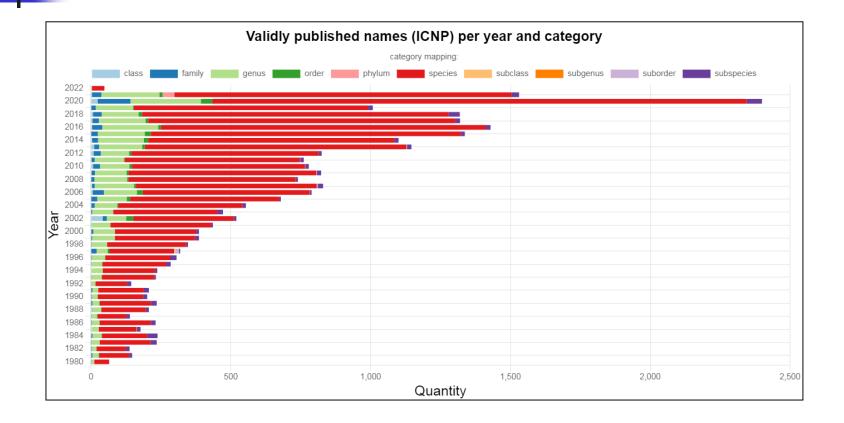

German Collection of Microorganisms and Cell Cultures GmbH Bioresources

 The Leibniz Institute DSMZ is the world's most diverse collection of biological resources (bacteria, archaea, protists, yeasts, fungi, bacteriophages, plant viruses, genomic bacterial DNA as well as human and animal cell lines).

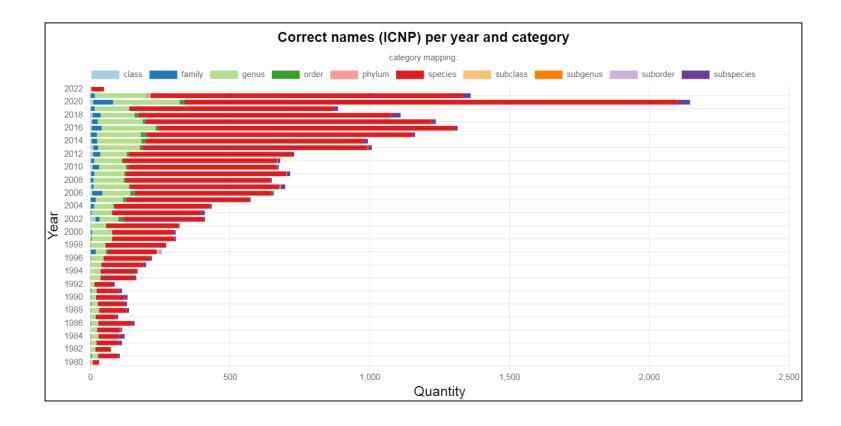


LPSN: Creator by J.P. Euzéby

Validly published names (ICNP) per year and country The International Code of Nomenclature of Prokaryotes (ICNP)



LPSN: Creator by J.P. Euzéby Emendations (ICNP) per year and country The International Code of Nomenclature of Prokaryotes (ICNP)



LPSN: Creator by J.P. Euzéby

Validly published names (ICNP) per year and category The International Code of Nomenclature of Prokaryotes (ICNP)

LPSN: Creator by J.P. Euzéby Correct names (ICNP) per year and category The International Code of Nomenclature of Prokaryotes (ICNP)

Bergey's Manual Trust Home Page Online encyclopedia of Systematics of Archaea and Bacteria (BMSAB)

- David Hendricks Bergey was an American bacteriologist, born December 27, 1860.
- He was chairman of the Editorial Board for the first edition of Bergey's Manual of Determinative Bacteriology, published in 1923.
- The Determinative Manual has subsequently been published in a further eight editions, and Bergey's Manual Trust is currently publishing the second edition of Bergey's Manual of Systematic Bacteriology.

Bergey's Manual Trust Home Page Online encyclopedia of Systematics of Archaea and Bacteria (BMSAB)

- Bergey's Manual Trust and John Wiley & Sons, Inc., are pleased to announce a new partnership to produce an online encyclopedia entitled Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB).
- This electronic work will provide:
- Up-to-date descriptions of the taxonomy, systematics, ecology, physiology and other biological properties of all named prokaryotic taxa.
- Release is anticipated in the fall of 2014.
- BMSAB will be available via Wiley Online Library.
- Individual volumes of BMSAB will also be made available in ebook format.
- Visit Bergey's Manual Trust at http://www.bergeys.org/formore information on the Trust and our other publications.

Bergey's Manual Trust Home Page The Bergey Award The Bergey Award is given in recognition of outstanding

contributions to bacterial taxonomy

Awardees:

- 1979 Roger Y. Stanier
- 1980 John L. Johnson
- 1981 Morrison Rogosa
- 1982 Otto Kandler
- 1983 Carl R. Woese
- 1984 W. E. C. (Ed) Moore
- 1985 Josef De Ley
- 1986 William H. Ewing
- 1987 Patrick A. D. Grimont
- 1988 Lawrence G. Wayne
- 1989 Hubert A. Lechevalier
- 1990 M. David Collins
- 1991 Erko Stackebrandt
- 1992 Wolfgang Ludwig
- 1993 Wesley E. Kloos
- 1994 Friedrich Widdel
- 1995 Michael Goodfellow
- 1996 Karel Kersters
- 1997 Rosmarie Rippka
- 1998 David A. Stahl

Awardees:

- 1999 Barry Holmes
- 2000 William B. Whitman
- 2001 Lindsay I. Sly
- 2002 Peter Vandamme
- 2003 Peter Kämpfer
- 2004 Rudolf Amann
- 2005 Jean Paul Euzéby
- 2006 David P. Labeda
- 2007 Jürgen Wiegel
- 2008 Hans-Jürgen Busse
- 2010 Antonio Ventosa
- 2014 Hans-Peter Klenk
- 2016 Elizaveta Bonch-Osmolovskaya
- 2017 Ramon Rossello-Mora
- 2018 Jongsik Chun(creator of the EzBioCloud database)

Stop awarding the Bergey Medal from 2018 onwards

2022 Bergey's Manual Trust

Bergey's Manual Trust Home Page The Bergey Medal

- The Bergey Medal is awarded in recognition of outstanding and life-long contributions to the field of systematics of Bacteria and Archaea.
- Nominations may be submitted at any time to the Bergey's editorial office at bergeys@uga.edu.
- Nominations should include a cover letter
- 1. summarizing the candidate's qualifications,
- 2. the significance of contributions to the systematics of prokaryotes, and
- 3. their curriculum vitae.

Bergey's Manual Trust Home Page The Bergey Medal

Recipients:

- 1994 R.G.E. Murray
- 1994 Riichi Sakazaki
- 1994 V.B.D. Skerman
- 1994 Eyvind A. Freundt
- 1995 Norbert Pfennig
- 1995 Dorothy Jones
- 1995 Norberto Palleroni
- 1996 Thomas D. Brock
- 1996 Marvin P. Bryant
- 1996 John G. Holt
- 1996 Emilio Weiss
- 1997 Lillian H. Moore
- 1997 Ralph S. Wolfe
- 1997 George A. Zavarzin
- 1998 Kjell Bøvre
- 1998 Holger Jannasch
- 1998 Julius P. Kreier
- 1998 Peter H. A. Sneath
- 1999 Wilhelm Frederiksen
- 1999 James W. Moulder
- 1999 Karl O. Stetter
- 1999 Hans Trüper
- 2000 Peter Hirsch
- 2000 Hans Reichenbach

- Recipients:
- 2000 Eiko Yabuuchi
- 2001 Joseph G. Tully
- 2001 Floyd E. Dewhirst
- 2001 E. Imre Friedmann
- 2002 Don J. Brenner
- 2002 Rita R. Colwell
- 2002 Noel R. Krieg
- 2003 Monique Gillis
- 2003 Hans Hippe
- 2004 David R. Boone
- 2005 Richard W. Castenholz
- 2005 Kazau Komagata
- 2006 Klaus P. Schaal
- 2008 Fergus Priest
- 2008 James T. Staley
- 2009 Karl Heinz Schleifer
- 2009 Erko Stackebrandt
- 2011 Michael Goodfellow
- 2011 Zhiheng Liu
- 2011 Ji-Sheng Ruan
- 2011 James M. Tiedje
- 2018 Fritz Widdel
 - 2018 Niall Logan Stop awarding the Bergey Medal from 2018 onwards

2022 Bergey's Manual Trust

Bergey's Manual Trust Publications

Bergey's Manual of Systematic Bacteriology **1st Edition**

John G. Holt, Editor-in-Chief Williams & Wilkins, Baltimore, MD

Published in 4 volumes:

Volume 1 (1984)

Gram-negative Bacteria of general, medical, or industrial importance ISBN 0-683-04108-8

Volume 2 (1986)

Gram-positive Bacteria other than Actinomycetes ISBN 0-683-07893-3

Volume 3 (1989)

Archaeobacteria, Cyanobacteria, and remaining Gram-negative Bacteria ISBN 0-683-07908-5

Volume 4 (1989)

Actinomycetes

ISBN 0-683-09061-5

Bergey's Manual Trust

BMT Home About the Trust	Bergey's Manual of Systematic Bacteriology 2nd Edition
Editorial Offices	Published by Springer, New York
Publications The Systematics - 1st Edition	The second edition is being published in 5 volumes - please click on the Volume links below for further details or to purchase the volume.
The Systematics - 2nd Edition The Determinative - 9th Edition	Volume 1 (2001) The Archaea and the deeply branching and phototrophic Bacteria Editor-in-Chief: George M. Garrity
Taxonomic outlines	Editors: David R. Boone and Richard W. Castenholz
Instructions for Authors	ISBN 0-387-98771-1 Volume 2 (2005)
BISMIS	The Proteobacteria
Trust newsletter	Editor-in-Chief: George M. Garrity
Resources	Editors: Don J. Brenner, Noel R. Krieg and James T. Staley ISBN 0-387-95040-0
	Volume 3 (2009) The Firmicutes Editors: Paul De Vos, George Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, Karl-Heinz Schleifer and William B. Whitman ISBN 0-387-95041-9
	Volume 4 (2011) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes Editors: Noel R. Krieg, James T. Staley, Daniel R. Brown, Brian P. Hedlund, Bruce J. Paster, Naomi L. Ward, Wolfgang Ludwig and William B. Whitman ISBN 0-387-95042-6
	Volume 5 (2012) The Actinobacteria Editors: Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha E. Trujillo, Ken- ichiro Suzuki, Wolfgang Ludwig and William B. Whitman ISBN 0-387-95042-7

Bacterial taxonomy SILVA

On-line databases on bacterial, archaea and eukaryotic taxonomy

- Most life on earth is microbial, belonging to the 'Bacteria' and 'Archaea' domains, and to numerous lineages of microbial 'Eukaryota' (e.g. protists).
- Less than 1% of microbes are cultivable, and therefore diversity was vastly underestimated by traditional microbiological methods.
- The known extent of microbial diversity has grown and continues to grow rapidly as sequence-based methods are used to characterize microbes.

Bacterial taxonomy SILVA

Databases on bacterial, archaea and eukaryotic taxonomy

- One of the major breakthroughs in the study of the diversity of microbes was the use of the ribosomal rRNA (rRNA) gene sequences, particularly of the small subunit (SSU; also called 16S rRNA for Bacteria and Archaea and 18S rRNA for Eukaryota).
- Appropriate taxonomic classification in sequence databases is crucial for organizing and cataloging microbial diversity.
- The SILVA rRNA gene databases use a phylogenetic tree-guided manual curation approach for the taxonomy of Bacteria, Archaea and Eukaryota.

Bacterial taxonomy SILVA Databases on bacterial, archaea and eukaryotic taxonomy

 SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up-to-date, qualitycontrolled databases of aligned small(16S/18S, SSU) and large subunit (23S/28S, LSU) ribosomal RNA (rRNA) sequences for all three domains of life (Bacteria, Archaea and Eukarya).

SILVA as a comprehensive web resource provides:

- 1. a manually curated(accurate) taxonomy for all three domains of life, based on representative phylogenetic trees for the small and large-subunit rRNA genes.
- 2. It is also an authorized provider of the LPSN(List of Prokaryotic Names with Standing in Nomenclature) taxonomy.

SILVA the rRNA Gene Databases

- SILVA represents the world's • leading public database for ribosomal RNA (rRNA) gene sequences for all three domains of life (Bacteria, Archaea, and Eukarya).
- It also provides • comprehensive, quality checked, and regularly updated data sets of aligned small (16S/18S, SSU) and large subunit (23S/28S, LSU) sequences for for all three domains of life (Bacteria, Archaea, and Eukarya).

silva de 🖗 NBI Press F11 to exit full screen Home SILVAngs Browser Contact SILVA News 01.03.2023 Welcome to the SILVA rRNA database project de.NBI Quarterly Newsletter A comprehensive on-line resource for quality checked and aligned The de.NBI Spring School 2023 - Data Management will ribosomal RNA sequence data take place 13-17 March at the IPK Gatersleben. We are more than proud that the de.NBI databases BRENDA and BacDive have SILVA provides comprehensive, quality checked and regularly updated been selected in the first set of 37 Global Core Biodata Resources! datasets of aligned small (165/185, SSU) and large subunit (235/285, LSU) ribosomal RNA (rRNA) sequences for all three domains of life 20.12.2022 (Bacteria, Archaea and Eukarva). Merry XMas and a Happy New Year SILVA are the official databases of the software package ARB. The SILVA Team wishes you a Merry Christmas & Happy New Year. Many thanks for using SILVA and all your support to improve SILVA and For more background information + Click here SILVAngs. Looking forward to see you again in 2023. 18.11.2022 SILVAngs de.NBI Quarterly Newsletter Annual Meeting of the de.NBI Industrial Forum - de.NBI Cloud User Meeting - 2022 - BioHackathon Germany 07.10.2022 SILVA.DSMZ.Permanent Real news today! SILVA is now part of the integrated data platform DSMZ Digital Diversity. This cooperation will guaranty the long-term sustainability of SILVA. We are now entering a transition phase to migrate SILVA to our new host the Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, which SILVA Alignment, Classification and Tree (ACT) Service is one of the largest biological resource centers worldwide. The SILVA ACT service combines alignment, search go to Archive -> and classify as well as reconstruction of trees in a single web application SILVA ACT is available at: - www.arb-silva.de/a User satisfaction survey SILVA is now part of the German Network for Bioinformatics SILVA Tree Viewer Infrastructure de NBI The SILVA Tree Viewer is a web application to To evaluate and improve our quality of service we need your browse and query the SILVA guide trees. feedback. Please help us by participating in this short a survey. A technical preview is available at mwww.arb ilva.de/treeviewer SILVA SSU 138.1 update release ssu LSU ARB Parc Ref NR 99 Parc The software package ARB Minimal length 300 1200/900 300 represents a graphicallybasic oriented, fully-integrated Quality filtering strong basic package of cooperating software Guide Tree по tools for handling and analysis of Release date 27.08.20 27.08.20 27.08.20 27.08.20 sequence information Aligned rRNA 9,469,124 510,508 1,312,534 95,286 sequences The ARB project has been started almost 30 years ago by Wolfgang Ludwig at the Technical University in Munich, Germany, see Dwww.arb-home.de. Citations Ouast C. Pruesse E. Yilmaz P. Gerken J. Schweer T. Yarza P, Peplies J, Glöckner FO (2013) The SILVA UniFuk ribosomal RNA gene database project: improved data SILVA is a member of the XUniEu processing and web-based tools. ZINucl. Acids Res. 41 project, a community-based project to (D1): D590-D596 achieve a universal taxonomic framework For the taxonomic framework for Eukarvotes, focused primarily on protists. UniEuk is integrating information from relevant genetic markers and classical morphology-Yilmaz P. Parfrey LW. Yarza P. Gerken J. Pruesse E. Quast C. based data, validated by a comprehensive network of taxonomy Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and experts "All-species Living Tree Project (LTP)" taxonomic frameworks. ANUCL. Acids Res. 42:D643-D648 SILVA Terms of Use/License Information Further references As of release 138 the SILVA databases, its taxonomy, and all files provided for download are licensed unter TCreate Commons ution 4.0 (CC-BY 4.0). SILVA RSS Feed Subscribe to our RSS Feed Sto get the latest News. All data is freely available for academic and commercial use as long as SILVA is credited as original author and a link to the full license is provided

Releases before SILVA 138 are not affected by the new license. Please refer to the license file provided in each download directory for the

license associated with the provided files.

elixir

LSU

1900

strong

ves

Ref NR 99

Bacterial taxonomy SILVA Databases on bacterial, archaea and eukaryotic taxonomy

Home SILVAngs Browser Search ACT Download Documentation Projects FISH & Probes Contact

SILVA rRNA database project. A comprehensive on-line resource for SILVA guality checked and aligned ribosomal RNA sequence data.

Welcome to the SILVA rRNA database project

A comprehensive on-line resource for quality checked and aligned ribosomal RNA sequence data.

SILVA provides comprehensive, guality checked and regularly updated datasets of aligned small (16S/18S, SSU) and large subunit (23S/28S, LSU) ribosomal RNA (rRNA) sequences for all three domains of life (Bacteria, Archaea and Eukarya).

SILVA are the official databases of the software package ARB.

For more background information → Click here

SILVAnes

Check out our service for Next Generation Amplicon data

SILVA Alignment, Classification and Tree (ACT) Service

The SILVA ACT service combines alignment, search d classify as well as reconstruction of trees in

17.12.2021

Merry Christmas & Happy New Year

The SILVA Team wishes you a Merry Christmas & Happy New Year. Many thanks for using SILVA and all your support to improve SILVA and SILVAngs. Looking forward to see you again in 2022.

27.11.2021

de.NBI Quaterly Newsletter Issue 4/21

Main topics: A further Scientific Advisory Board conference of the de.NBI network and ELIXIR-DE, 2nd annual meeting of the

de.NBI Industrial Forum, 4th de.NBI Cloud User Meeting,

Women in Data Science - Perspectives in Industry and Academia II. ...and much more!

10.06.2021

Bidding farewell to 'The All-Species Living Tree' project

For the last 12 years, SILVA has been hosting 'The All-Species Living Tree' project (LTP). With their newest release (LTP 2020), the LTP team has decided to host the project on their own website. The SILVA team will

continue to integrate the LTP taxonomy and classifications into the SILVA releases. We wish the LTP team all the best at their new home. 25.05.2021

The 24rd de.NBI Quaterly Newsletter published

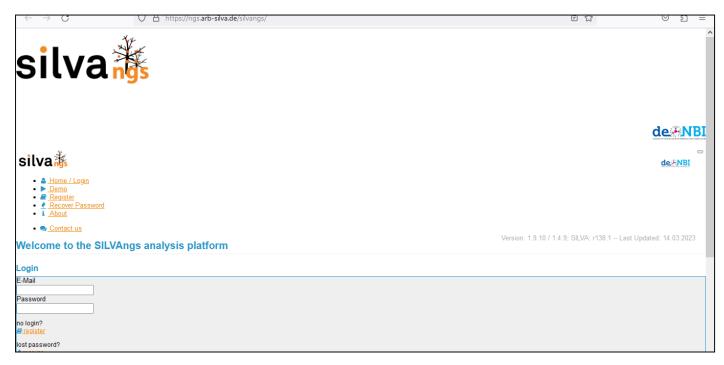
ELIXIR-CONVERGE releases the Research Data Management

Bacterial taxonomy SILVA Databases on bacterial, archaea and eukaryotic taxonomy

- How big is the SILVA database?
- The uncompressed version is ~6.8 GB and the compressed version is 241 MB. recreated seed database (5736 bacteria, 81 archaea, and 1824 eukarya sequences).
- The actual reference alignment that SILVA uses with their SINA aligner is called the SEED alignment.

What is alignment seed?

Seeded alignment is the dominant technique for large-scale genomic sequence comparisons, and BLASTN is the most popular implementation of it. SINA Aligner: will align your rRNA gene sequences according to the global SILVA alignment for rRNA genes.


Bacterial taxonomy SILVA

Databases on bacterial, archaea and eukaryotic taxonomy

- With the newly developed SILVA-NGS pipeline, we will grant easy access to the SILVA taxonomy for the classification of rRNA gene amplicon data.
- SILVA-NGS accepts any kind of short- and long-read sequence rRNA gene data in FASTA format and performs quality control, alignment and classification of rRNA genes based on the curated SILVA taxonomy.
- All steps (upload, progress monitoring, visualization of results and download of data) can be geared via the SILVA-NGS web-interface.
- The system is available at www.arb-silva.de/ngs.
- Finally, we would like to emphasize that the SILVA taxonomy curation is an open and transparent process, and input from users and experts is highly appreciated.

Bacterial taxonomy SILVA Databases on bacterial, archaea and eukaryotic taxonomy

- The system is available at <u>www.arb-silva.de/ngs</u>.
- Welcome to the SILVAngs analysis platform

Bacterial taxonomy

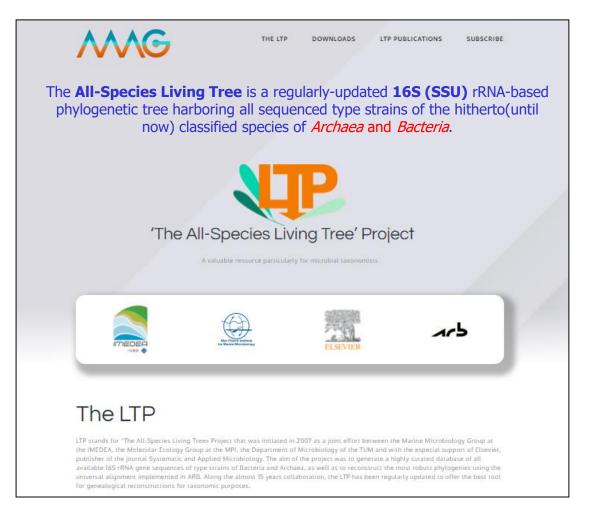
LTP

Databases on bacterial and archaea taxonomy

- The All-Species Living Tree Project (LTP) is an international initiative for the creation and maintenance of highly curated 16S rRNA gene sequence databases, alignments and phylogenetic trees for all the type strains of Archaea and Bacteria.
- At one stage, 23S sequences were also collected but this has since stopped.
- Like SILVA, LTP is also an authorized provider of the LPSN taxonomy.

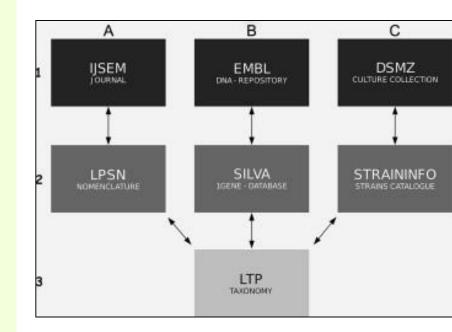
LPSN: List of Prokaryotic Names with Standing in Nomenclature

Bacterial taxonomy



Databases on bacterial and archaea taxonomy

- 'The All-Species Living Tree' Project is a collaboration between various academic groups/institutes, such as ARB, SILVA rRNA database project, and LPSN, with the aim of assembling a database of 16S rRNA sequences of all validly published species of Bacteria and Archaea.
- 2. Similar (and more recent) projects include the Genomic Encyclopedia of Bacteria and Archaea (GEBA), which focused on whole genome sequencing of bacteria and archaea.


The ARB Project: It is a free software package for the phylogenetic analysis of rRNA and other biological as sequences such amino acids.

Bacterial taxonomy The' All-Species Living Tree' Project (LTP) Databases on bacterial and archaea taxonomy

Bacterial taxonomy The' All-Species Living Tree' Project (LTP) Databases on bacterial and archaea taxonomy

The All-Species Living Tree' Project is a collaboration between various academic groups/institutes, such as ARB, SILVA rRNA database project, **European Molecular** Biology Laboratory(EMBL), LPSN and some more.

The' All-Species Living Tree' Project (LTP) List of species that are susceptible to being reclassified due to a clear distant affiliation with the *sensu stricto* members of their taxon

- The current release LTP_2020 (Ludwig *et al.*,2021) introduces
- A. important changes over the former as a large set of sequences had been substituted,
- B. the universal alignment has been thoroughly improved to accommodate the new sequences that contain:
- 1. insertions,
- 2. as well to improve the helix structures, and
- 3. has increased from 42,283 to 98,863 homologous positions.
- 4. We also provide the most robust phylogenetic tree currently achievable with the available dataset.

The' All-Species Living Tree' Project (LTP) List of species, genera and families that are susceptible to being reclassified due to a clear distant affiliation with the *sensu stricto* members of their taxon

	MG	THE LTP DOWNLOA	ADS LTP PUBLICATIONS SU	JBSCRIBE		
	The new LTP publication can be downloaded for free (until December) here:					
Ludwig, W., Viver, T., Westram, R., Gago, J.F., Bustos-Caparros, E., Knittel, K., Amann, R., Rossello-Mora, R. (2021) Release LTP_12_2020, feat new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 40: 126218						
https://doi.org/10.1016/jsyapm.2021.126218						
	List of taxa susceptible to be reclassified					
	Species	Table S11 Prol	oblematic Species.ods			
	Genera	Table \$12 Pro	oblematic genera.ods			
	Families	Table \$13 Pro	oblematic high taxa.ods			
	LTP_06_2022					
	LTP database in ARB format	LTP_06_20	022.arb			
	LTP database in csv format	LTP_06_20	022.csv			
	LTP_all tree in newick format	Tree_LTP_	_all_06_2022.ntree			

The' All-Species Living Tree' Project (LTP) List of species that are susceptible to being reclassified due to a clear distant affiliation with the *sensu stricto* members of their taxon

A	В	С	D		
1					
2	Table S11. List of species that are susceptible to being reclassified due to a clear distant affiliation with the sensu stricto members of their taxon.				
3	SPECIES	ACC Nr.	CORRECTNESS OF THE ACCESSION NUMBER	REMARKS	
4	Abyssivirga alkaniphila	KP233895	correct	This species affiliates away from the Lachnospiraceae and may	
5	Acetivibrio ethanolgignens	FR749897	correct	This species affiliates away from the type species and may be	
6	Actinocrispum wychmicini	AB738044	correct	This species affiliates within the genus Kibdelosporangium and	
7	Actinotalea caeni	KF056990	correct	This species affiliates away from its type species and may be r	
8	Actinotalea ferrariae	HQ730135	correct	This species affiliates away from the type species, and may be	
9	Adhaeribacter terrae	LC177335	correct	This species affiliates away from the type species together wit	
10	Adhaeribacter terreus	EU682684	correct, LPSN lists AB264126	This species affiliates away from the type species together wit	
11	Aestuariicella hydrocarbonica	KF982858	correct	This species and genus is classified in the order Alteromonada	
12	Agaricicola taiwanensis	FJ594057	correct, LPSN lists MT760167	This species affiliates away from the Rhodobacteraceae but af	
13	Ahniella affigens	KY649437	correct	This species is classified as Rhodanobacteraceae but affiliates	
14	Ahrensia kielensis	ARFW01000012	correct, LPSN lists D88524	This species affiliates with Phyllobacterium and Oceaniradius	
15	Ahrensia marina	KJ700633	correct	This species affiliates with Phyllobacterium and Oceaniradius	
16	Aidingimonas halophila	FJ418176	correct, LPSN lists MT758071	This species affiliates with Halomonas and may be reclassified	
17	Aidingimonas lacisalsi	MK296409	correct	This species affiliates with Halomonas and may be reclassified	
18	Aldersonia kunmingensis	DQ997045	correct	This species affiliates within Nocardia and may be reclassified	
19	Alkalihalobacillus macyae	AY032601	correct	This species should be reclassified as a member of Anaerobaci	
20	Allisonella histaminiformans	AF548373	correct	This species affiliates away from its type species and may be r	
21	Amniculibacterium aquaticum	MG603666	correct	This species of Flavobacteriaceae affiliates with the Weeksella	
22	Amphiplicatus metriothermophilus	KF153051	correct	This species affiliates with a very long branch	
23	Anaerospora hongkongensis	AY372050	correct, LPSN lists AY372051	This species affiliates away from the Acidaminococcaceae and	
24	Antrihabitans stalactiti	MK605288	correct	This species affiliates within one lineage of Rhodococcus that	
25	Aquaspirillum arcticum	AB074523	correct	This species is classified as Chromobacteriaceae and may be r	
26	Aquaspirillum polymorphum	FJ562215	correct, LPSN lists AB680539	This species affiliates with the Rhodospirillaceae and may be r	
27	Aquisalinus flavus	KJ782430	correct	This species affiliates within the genus Parvularcula, and may	
28	Arsenophonus nasoniae	AY264674	correct	This species affiliates away from Morganellaceae and may be	
29	Arundinibacter roseus	MG799130	correct	This species of Cytophagaceae affiliates with Spirosomaceae,	
30	Asteroleplasma	M22351	correct	This species of Mollicutes affiliates with the Fibrobacteres and	
31	Aurantiacicella marina	LC055189	correct	This species affiliates with Aquimarina sensu stricto and shoul	
32	Aureicoccus marinus	AB557547	correct	This species affiliates away from the type species and may be	
33	Bacillus tianshenii	KF811034	correct	This species affiliates within Sutcliffiella and should be reclass	
34	Bacteroides galacturonicus	DQ497994	correct	This species is closest to Lactobacillus rugosae and may need	
35	Bacteroides pectinophilus	ABVQ01000037	correct, LPSN lists ABVQ01000036	This species affiliates with the Lachnospiraceae and is suscept	
36	Bauldia consorciata	GQ221764	correct, LPSN lists FJ560750	The species affiliates away from its type species and is suscep	
	Table S11 Problematic Species +		: • •	•	
FADV				₩ @ M + 100	

sensu stricto= in a narrow or strict sense. In taxonomy(of taxon).

The' All-Species Living Tree' Project (LTP) List of genera that are susceptible to being reclassified due to a clear distant affiliation with the *sensu stricto* members of their taxon

A	В	с
1		
2	Table S12. List of genera that are susceptible to being	g reclassified.
3	Genus	Remark
4	Acidovorax	The genus is polyphyletic and needs revision
5	Actinobacillus	The genus is polyphyletic and needs revision
6	Actinokineospora	The genus is polyphyletic and needs revision
7	Actinomadura	The genus is polyphyletic and needs revision
8	Actinomyces	The genus is polyphyletic and needs revision
9	Actinoplanes	The genus is polyphyletic and needs revision
10	Actinosynema	This genus affiliates within Lentzea and may be susceptible to reclassification
11	Afipia	The genus is polyphyletic and needs revision
12	Alkalihalobacillus	The genus is polyphyletic and needs revision
13	Allorhizobium	The genus is polyphyletic and needs revision
14	Altererytrhobacter	The genus is polyphyletic and needs revision
15	Alteromonas	The genus is polyphyletic and needs revision
16	Ancylobacter	The genus is polyphyletic and needs revision
17	Aquibacillus	The genus is polyphyletic and needs revision
18	Archaeoglobus	The genus is polyphyletic and needs revision
19	Arthrobacter dispersed	The genus is polyphyletic and needs revision
20	Aureimonas	The genus is polyphyletic and needs revision
21	Azohydromonas	The genus must be reclassified within the Comamonadaceae
22	Bacillus miscanthi	The genus is polyphyletic and needs revision
23	Beijerinckiaceae dispersed	The genera Pseudochelatococcus, Methylocapsa, Methylocella, Methylorosula and Methylovirgula may need to change the family as they do not affiliate with Beijerinckia
24	Bizionia	The genus is polyphyletic and needs revision
25	Bizionia dispersed	The genus is polyphyletic and needs revision
26	Brenneria	The genus is polyphyletic and needs revision
27	Brucella	The genus is polyphyletic and needs revision
28	Caloramator	The genus is polyphyletic and needs revision
29	Celerinatantimonas	The genus is not monophyletic and could be susceptible to reclassification as Aliagarivorans, both genus and family
30	Cellulophaga	The genus is polyphyletic and needs revision
31	Cereibacter	The genus is polyphyletic and needs revision
32	Chelatococcus	The genus is polyphyletic and needs revision
33	Chryseolinea and Ohtaekwangia	Both genera are classified within the Fluvivirgaceae, however, together with Chryseotalea they could be a new family within Cytophagales
34	Clostridium	The genus is polyphyletic and needs revision
35	Comamonas	The genus is polyphyletic and needs revision
36	Cryobacterium	The genus is polyphyletic and needs revision
 ← ▶ 1 	Table S12 Problematic genera 🕂	: (
DEADY		

sensu stricto= in a narrow or strict sense. In taxonomy(of taxon).

eLMSG (eLibrary of Microbial Systematics and Genomics)

- eLMSG (eLibrary of Microbial Systematics and Genomics) is a web microbial library that integrates not only taxonomic information, but also genomic information and phenotypic information (including morphology, physiology, biochemistry and enzymology).
- The taxonomic system of eLMSG is manually curated and composed of all validly and some effectively published taxa.
- For each taxon, the Latin name, taxon ID (NCBI taxonomy), etymology, rank, lineage, the dates of effective and/or valid publication, feature descriptions, nomenclature type and references for the proposal and emendations during the history of the taxon are presented.
- Besides these data, the species taxa contain information about 16S rRNA gene and/or genome sequences. All publicly available genome data of each type species including both type and non-type strains were collected, and if needed, re-annotated using the standardized analysis pipeline.
- Furthermore, pan-genomic data analyses were conducted for species with ≥5 genome sequences available. Finally, for all type species, taxonomically relevant phenotypic data were extracted and curated from literatures, which were further indexed into eLMSG as searchable and analyzable data records.
- Taken together, eLMSG is a comprehensive web platform for studying mi- crobial systematics and genomics, potentially useful for better understanding microbial taxonomy, natural evolutionary processes and ecological relationships.

re3data.org: eLibrary of Microbial Systematics and Genomics; editing status 2022-03-24; re3data.org - Registry of Research Data Repositories. http://doi.org/10.17616/R31NJN4V last accessed: 2024-12-24.

An Introduction to Bacterial Taxonomy

Plant Pathogenic Bacteria

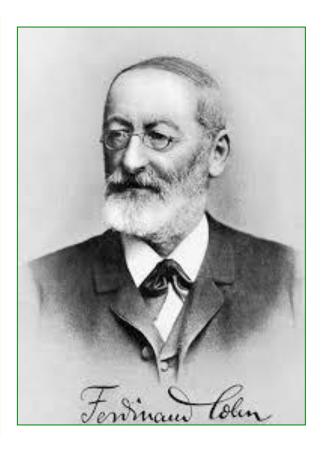
Taxonomy The oldest biological sciences

- 1. Science of Classification of organisms.
- 2. Hopes to show relationships among organisms.
- 3. Is a way to provide universal identification of an organism?
- 4. Why do we care things are related?
- It is perhaps one of the oldest biological sciences, having been in existence for at least 2,400 years, since Aristotle devised the first hierarchy based on creationist and essentialist tenets/ideas (Ereshefsky,1994).

Taxonomy History of bacterial taxonomy

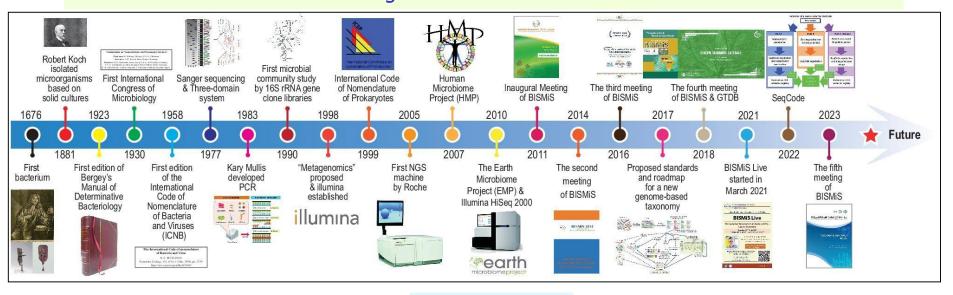
- 1675: Discovery of bacteria by Antonie Van Leeuwenhoek.
- 1880s: Introduction of "pure culture" techniques (Koch & Petri).
- 1900-1950: Taxonomy based on morphology.
- 1950s: Numerical taxonomy & chemotaxonomy.
- 1960s: Introduction of genotypical methods.
- Present: Polyphasic taxonomy

Taxonomy The development of prokaryote taxonomy


- Prokaryote classification is the youngest and most dynamic among the different classifications of living organisms.
- Prokaryotes were not even known to exist until a few centuries ago, due to their small size and the fact that they can not normally be seen with the naked eye.
- The development of a reliable classification based on morphological traits as these for higher eukaryotes has been difficult because of the relative simplicity of the prokaryotes.
- The lack of a useful fossil record, together with the difficulties in identifying diagnostic characteristics from these small organisms have contributed to the instability of the prokaryote classification system.

Taxonomy Prokaryote taxonomy

- Due to the simpler nature of the prokaryotes, taxonomists understood that in the technological developments of other disciplines, there were profitable parameters that would help to reflect natural relationships among organisms.
- The search for and establishment of novel criteria have been recurrent themes throughout the history of prokaryote taxonomy.


Taxonomy Ferdinand Julius Cohn (1828-1898) A founder of modern microbiology; Pioneer of bacteriology

- Ferdinand Julius Cohn (24 January 1828–25 June 1898) was a German biologist.
- He is one of the founders of modern bacteriology and microbiology.
- Ferdinand J. Cohn was borne in the Jewish quarter of Breslau in the Prussian Province of Silesia (which is now Wroclaw, Poland).

Milestones of prokaryotic systematics

Recent decades have seen remarkable progress with the advent of whole-genome sequencing and bioinformatics, which allowed the development of a wide array of quantitative similarity criteria, such as average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), average amino acid identity (AAI), protein ortholog clusters percentage (POCP) and core genome-based phylogenetics. Together, these approaches have improved the resolution and reliability of prokaryotic classifications and assignment at all taxonomic.

Jiao *et al.*,2024

Milestones of prokaryotic systematics Significant advancements in prokaryotic systematics

Year	Name of event	Significance
1684	First observation of bacterial cells by Antonie van Leeuwenhoek	Origin of phenotype-based microbial taxonomy
1773–1786	Introduction of the first bacterial description by O.F. Müller	Introduction of morphological descriptions
1809	Nomination of Polyangium vitellinum by Johann Heinrich Friedrich Link	Beginning of nomenclature of bacterial species
1875	Purification of <i>Bacillus anthraci</i> s by Robert Koch	Beginning of the pure-culture based bacteriology
1875	Attempt to establish formal rules for microbial nomenclature by Ferdinand Cohn	First attempt at formal microbial nomenclature
1896	First report and description of bacterial genera by K.B. Lehman and R. Neumann	The first report of bacterial genera
1901	The first manual of bacterial taxonomy was published by Professor Frederick Dixon Chester	Publication of the first handbook of bacterial taxonomy
1923	Bergey's <i>Manual</i> was published by the American bacteriologist, David Hendricks Bergey and American Society for Microbiology members	The birth of Bergey's Manual of Determinative Bacteriology
1977	Archaea were first classified as a separate group of prokaryotes based on phylogenies derived from 16S rRNA catalogs	The birth of the three-domain system and rRNA-based taxonomy
1984	Introduction of culture-independent studies of prokaryotic diversity in natural environments based on rRNA	The birth of the culture-independent study of prokaryotic diversity
1977–2000	Inclusion of DNA-DNA hybridization, GC content analysis	Beginning of the genome-based taxonomy of prokaryotes
2000–2023	Inclusion of dDDH, ANI, core/conserved gene-based phylogenetics, AAI, POCP, MALDI-TOF-MS	Comprehensive phenotype, genotype and protein-based taxonomy of prokaryotes

Taxonomy Ferdinand Julius Cohn (1828-1898) A founder of modern microbiology; Pioneer of bacteriology

- About 1868 Cohn started to study bacteria.
- He was the first to recognize and study bacteriology as a separate science.
- He discovered the formation and germination of spores (called endospores) in certain bacteria, particularly in *Bacillus subtilis.* He was also the first to note endospores' resistance to high temperatures.
- His initial classification of bacteria consisted of four groups based on shape:
- 1. Sphaerobacteria (sphere-shaped),
- 2. Microbacteria (rod-shaped),
- 3. **Desmobacteria** (filamentous), and
- 4. Spirobacteria (screw-like shaped).

World of Microbiology and Immunology, 2003, Britannica.com

Taxonomy The Science of Classification

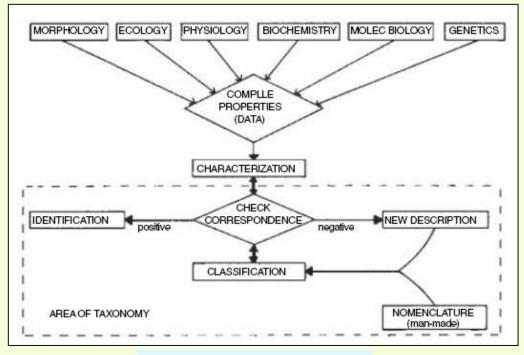
- The field of taxonomy is divided into three disciplines:
- 1. Classification, which means the orderly arrangement of units into groups.
- 2. Nomenclature, which means the labeling of units defined by classification.
- 3. Identification of unknowns with the units defined by classification and labeled by nomenclature (i.e., identification is the practical application of the arts of classification and nomenclature).
- Taxonomy can be viewed these three separate but interrelated areas.

Taxonomy Classification vs. Nomenclature

- Bacteria have no "official" classification scheme. Because, classification is mediated by the scientific method and there are no rules for it. In another word, taxonomy is not regulated by the code.
- 2. But they do have formal nomenclature, which is regulated by internationally accepted rules.
- 3. The International Committee on Systematics of Prokaryotes (ICSP) is responsible for updating and implementing the rules of the Code.

Taxonomy Classification vs. Nomenclature

- Principle 1(4) of the Code states, "Nothing in this Code may be construed (interpret) to restrict the freedom of taxonomic thought or action".
 What does that mean? Essentially, that anyone is free to design their own system of classifying bacteria.
- Code only deals with the way species, genera, and higher taxa of prokaryotes are named.


Taxonomy The Science of Classification

Taxonomy	Nomenclature	Identification
Ordering organisms into groups/taxa		
Basis for everything we do		
(dis)similarity phylogenetic related-		

Altwegg,2005

Information flow diagram Relationships between the characterization and the classification

- Information flow diagram indicating the relationships between the characterization and the classification of a bacterial strain.
- The two important working steps (indicated by diamond-shaped boxes) are compiling properties and checking for correspondence between characterization and classification.

Evolution of taxonomy

- 1. Classification dominated by phenotype.
- 2. Classification dominated by genotype.
- ("...classification must be a reflection of the natural relationships of bacteria, i.e. their degree of DNA similarity...")

Taxonomy The development of prokaryote taxonomy

- During the last decades bacterial taxonomy has undergone remarkable changes.
- New categories of information of potential taxonomic value have become available:
- e.g.
- 1. Chemotaxonomy,
- 2. DNA base composition,
- 3. **DNA-DNA hybridization**,
- 4. Comparative sequence analysis of conserved macromolecules like 16S rDNA.
- Make possible very fine distinctions between organisms and reveal dissimilarities not detected before.

1. Identification

Basically, bacteria are identified/classified according to phenotypic differences, or by genotypic differences

Characteristics used for ID

- Phenotype (the set of observable characteristics of an individual resulting from the interaction of its genotype with the environment): Size, shape, metabolism, serology, FA analysis.
- Genotypes (the genetic constitution of an individual organism): Genetic makeup-PCR, DNA probes, Whole-genome sequencing using NGS technology (Next Generation Sequencing), etc.

2. Nomenclature The handmaid of taxonomy

International Code of Nomenclature of Prokaryotes (The Code/Nomenclature Code).

Bacterial nomenclature Some bacteriologists view

- The Code only deals with the way species, genera, and higher taxa of prokaryotes are named.
- Scientific Neutrality dictate that there is no official taxonomy or nomenclature.
- Don't just use the latest published name as it may not represent the best classification.
- Each individual researcher must choose the best classification and use the associated nomenclature in support of the classification.

Bacterial nomenclature Some bacteriologists view

 Yet a small number of plant bacteriologists appear to believe that, except for nomenclatural constructions regulated by the Code, they are free to use any names of their choosing and, unwittingly (without knowing) perhaps, breach (break)these basic linguistic conventions.

Bacterial nomenclature What name should be used

What name should I use

Any **valid name** that correspond to the classifications that most accurately describe the relationships of the organisms according to your scientific judgement

Agrobacterium tumefaciens

vs Rhizobium radiobacter

Erwinia carotovora vs

Pectobacterium carotovorum

Bacterial nomenclature The primary objective of Code of Nomenclature of Bacteria (now Prokaryotes)

- The Bacteriological Code governs names of prokaryotes in the ranks of:
- Class, Subclass, Order, Suborder, Family, Subfamily, Tribe, Subtribe, Genus, Subgenus, Species and Subspecies.
- Taxa above the rank of Class (Phylum, Kingdom, Division and Domain) are not covered by the Code.

Domain: The highest of taxonomic rank ('80s)

Kingdom (not used by most bacteriologists),1969

Phylum or division of the kingdom

Class

Order

Family(related genera) Genus(related species) plural: Genera Species(related strains) both singular & plural Subspecies

Class also is covered by Code.

Bacterial nomenclature The primary objective of the Code

- The nomenclature of bacterial plant pathogens, like that of many other life forms, is constantly changing in response to:
- 1. New insights, and
- 2. Our understanding of relationships among bacteria.

Bacterial nomenclature Some more purposes

- Bacterial nomenclature provides the foundation from which:
- 1. Host-parasite disease relationships are defined,
- 2. Therapeutic regimens (plans) are developed, and
- 3. Epidemiological investigations (e.g., comparative analysis of bacterial strains involved in outbreaks) are instigated.

The primary objective of the Code Key function of the Code

- The key function of the Code is to ensure that names are:
- 1. legitimate,
- 2. effectively published, and
- 3. validly published.
- The mechanism for determining which name is correct is based on:
- 1. legitimacy,
- 2. valid publication, and
- 3. priority of publication (Principle 6).

Bacterial nomenclature The primary objective of the Code

- The naming of bacteria is controlled by the International Code of Nomenclature of Prokaryotes (The Code/Nomenclature Code).
- The mechanism for determining which name is correct is based on:
- 1. Legitimacy
- 2. Effectively and validly publications
- 3. Priority of publication

Note: Readers should monitor IJSEM and the List of Prokaryotic Names with standing in Nomenclature (www.bacterio.net) to determine if new names have been validly published (Bull *et al.*,2012;2014).

Bacterial nomenclature The primary objective of the Code

- 1. **Legitimacy:** The first step in the creation of a correct name is the proposal of a legitimate name. i.e. to be ensure that the proposed name fulfills the Rules and therefore is legitimate.
- Effectively publication: The name must be effectively published in a suitable publication medium. i.e. it is the responsibility of the reviewers and editors of the publication in which the name is effectively published to confirm that the name meets the criteria governing legitimacy.
- 3. **Validly publication:** An effectively published name must be validly published in IJSEM before it can be considered to have a standing in nomenclature.
- 4. **Priority:** Priority in nomenclature is determined by the date of valid publication.

Legitimate names proposed in IJSEM are effectively and validly published in a single step.

The primary objective of the Code Creation and determination of correct names Legitimacy

- A name published following the Rules and/or the Standards.
- Names and epithets may be:
- Legitimate: in accordance with the Rules;
- Illegitimate: contrary to the Rules [Rule 23a Note 5].
- A legitimate name is in accordance with the Rules and only names in accordance with the Code may be validly published (Tindall,2008).

Note:

- 1. Legitimate names proposed in IJSEM are effectively and validly published in a single step, but the
- 2. Legitimate proposal, valid publication, and determination of priority, are distinct processes.

The primary objective of the Code Creation and determination of correct names Legitimacy

- The primary objective of the Code is to regulate the creation of a nomenclature of correct names.
- 1. Names should be unambiguous;
- 2. Names should be stable;
- 3. Names should be universal.

The primary objective of the Code Validation list Validly Published

- Each year the Validation Lists serve as an important source of information for phytobacteriologists.
- Validly Published: According to the Code, a proposed name is validly published when the name appears in IJSEM, an official publication of the ICSP (International Committee on Systematics of Prokaryotes) either as:
- 1. an original manuscript proposing the name, or
- 2. through listing on the Validation Lists.

The primary objective of the Code Effectively published

Effectively Published:

- Not everyone may wish to publish in that journal and, of course, authors are free to publish wherever they wish.
- The Prokaryotic Code allows scientists to validate names effectively published in journals other than IJSEM.
- Once a newly proposed name is published, it is called 'effectively published'.

The primary objective of the Code Effectively published

Effectively Published:

- Not everyone may wish to publish in that journal and, of course, authors are free to publish wherever they wish.
- The Prokaryotic Code allows scientists to validate names effectively published in journals other than IJSEM.
- Once a newly proposed name is published, it is called 'effectively published'.

The primary objective of the Code Effectively publication

- Publication of the name and description of a taxon in a recognized scientific printed and/or electronic publication [Rule 23a Note 5 and Rule 25a].
- 2. The publications must be conform to requirements laid down in the Bacteriological Code (1990 Revision).
- No other kind of publication (communications at meetings, minutes of meetings, abstracts of papers presented at meetings, catalogues of collections, microfilms, nonscientific periodicals, newsletters, patents...) is accepted as effective [Rule 25b].

The primary objective of the Code Validation list Effectively published

- To obtain the status of validly published, the authors must then take the second route:
- a copy of the publication must be sent to the IJSEM editorial office with the request to include the names in the journal's bimonthly Validation List.
- Such requests must be accompanied by further documentation – in particular, proof that the type strain of the new species and any subspecies are available from at least two culture collections in different countries.
- 3. The validation list editors of the journal will check the documents and, if all conditions for valid publication are met, the names will be listed in the next Validation List.

The primary objective of the Code Validation list Effectively published

- Thus, scientists wishing to have new names and/or combinations included in a list should send the pertinent reprint or a photocopy or a PDF file thereof to the IJSEM Editorial Office.
- Any effectively published names be validated by sending the publication pdf to IJSEM with proof that (for species and subspecies) the designated type strain is available without restrictions from at least two public culture collections located in different countries.
- 1. Unfortunately, many more names of new pathogenic bacteria are effectively published in the literature, but never submitted to the IJSEM for validation.
- 2. Consequences of failing to do this can be damaging, as the name is 'effectively published' but never 'validated'.

Bacterial nomenclature Valid publication vs. Invalid publication

Valid publication

- The name or epithet (species names) is published in the body of an article in the IJSEM or does appear in a Validation List [Rule 27].
- 2. A nomenclatural type (type strain) is designated for a new taxon.
- 3. The name or epithet accepted at the time of publication by the author who published it [Rule 28b].

Invalid publication

- 1. The name or epithet is not published in the body of an article in the IJSEM or does not appear in a Validation List [Rule 27].
- 2. A nomenclatural type (type strain) is not designated for a new taxon.
- 3. The name or epithet was not accepted at the time of publication by the author who published it [Rule 28b].

Validation Lists are lists published in the IJSB/IJSEM, serving as a mechanism for validly publishing prokaryotic names which have been effectively, but not validly published.

Bacterial nomenclature Invalid publication

- Unfortunately, there are several cases where a name could not be validated.
- A name was used widely before 1980, but not included in the Approved Lists of Bacterial Names in 1980.
- A name was published outside of IJSEM, but never validated as either:
 - No one sent the pdf and further required documentation to IJSEM for validation.
 - The publication does not meet the minimal requirements of the Code. These minimal requirements will be explained later.
- Names not validly published are given in quotation marks, e.g. 'Selenomonas massiliensis' to differentiate from validly published names.
 EzBioCloud,2019
 10

Bacterial nomenclature Valid publication/valid names

- The minimal and only requirements for validation of names of new species and subspecies according to the Prokaryotic Code are:
- 1. A type strain must be designated. Sometimes, a paper describing a new species does not mention which strain is the type strain. In such cases, the name cannot be validated.
- 2. The type strain should be deposited to two culture collections in two different countries. This ensures that the type strain remains available also for example when a culture collection discontinues its activity or loses the strain.
- 3. The type strain must be available to anyone through the culture collections. Patent strains cannot serve as type strains.
- If you want to patent a strain and restrict the distribution, it cannot serve as the nomenclatural type for a species or subspecies.
- A proper etymology and description should be given.

Nomenclatural type Type strain

- In order for a name to be validly published, the proposal for the name must be accompanied by a number of criteria.
- Among these criteria is the designation of a nomenclatural type.
- Just as physics has reference points for the meter or the kilogramm - so too does biology, with the nomenclatural types being the reference points for a taxon.
- In the cases of the species and subspecies, these reference points are represented by type strains.

Nomenclatural type Importance of type strains

- Given the central importance of type strains, it is important that they be made available as widely as possible.
- The best course of action would appear to be to deposit type strains in a suitable culture collection, which should be able to maintain the distribution of the strain in the future.
- Clearly, depositing a type strain in such a way that it is not easy to access is counterproductive (causing problems) to the principle behind the deposit of type strains, that of making them widely and easily available for comparative purposes.

Validation Lists List of new names and new combinations previously effectively, but not validly, published Old version

LPSN Home LPSN News	Google Custom Search Q	Genera and taxa above the rank of genus: A-C	
About LPSN	Names validly published by announcement in Validation Lists	Genera and taxa above the rank of genus: D-L	
Contact Resource description		Genera and taxa above the rank of genus: M-R	
All names A-C	Contents	Genera and taxa above the rank of genus: S-Z	
D-L M-R	Introduction Notes	Names validly published since 01 January 1998	
s-z Classifications Support	 Notes Validation Lists: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 	Other categories and changes covered by the Rules	
Support	100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	Candidatus	
Search LPSN Google Search	100 101 102 103 104 103 100 107 108 109 110 111 112 113 114 113 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153	Some prokaryotic names without standing in nomenclature	
	Introduction	Other categories and changes not covered by the Rules	
LABORATORIES DISEASE		Nomenclature	
🌭 🌞 🐞 learn more!	Validation Lists are lists published in the IJSB/IJSEM, serving as a mechanism for validly publishing	Collections	
Ribocon	prokaryotic names which have been effectively, but not validly published.	Miscellaneous	
	Announcement in a Validation List is primarily the responsibility of the author(s) of the new names or new combinations. However, other individuals may also submit a new name or new combination for valid publication, provided it conforms to the rules of the code. Scientists wishing to have new names and/or combinations included in a list should send the pertinent reprint or a photocopy or a PDF file thereof to the	₽ ABIS	
Please support LPSN!	IJSEM Editorial Office.		
Denete	IJSEM Editorial Office, Microbiology Society, Charles Darwin House, 12 Roger Street, London WC1N 2JU, UK.		
Donate	e-mail: info@microbiologysociety.org Tel: +44 (0)20 7685 2400		
MANK 🔜 VISA 🔜 🕬	181. +44 (0/20 / 065 2400		

2 February 2017 - The names published in the July 2016 issue (66/7) of IJSEM have been added to LPSN.

Note: From February 2020, LPSN was integrated into the DSMZ's Prokaryotic Nomenclature Up-to-date (PNU) database as an all-new service. LPSN-DSMZ's website (https://lpsn.dsmz.de). Validation Lists List no. 194,2020 Oren and Garrity Int. J. Syst. Evol. Microbiol. 2020;70:4043-4049.

The names given in these lists have priority according to the issue of the IJSEM which they were published. (Rule 27).

Microbiology Society, 2020

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY VALIDATION LIST NO 194 Oren and Garrity, Int. J. Syst. Evol. Microbiol. 2020;70:4043–4049 DOI 10.1099/ijsem.0.004244

List of new names and new combinations previously effectively, but not validly, published

Aharon Oren^{1,*} and George Garrity^{2,*}

The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the *International Code of Nomenclature of Prokaryotes* (2008 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.

Name/authors	Proposed as	Namen-Internal type i	Principi	Reference
Accelobacter ascendens (De Ley and Frateur 1974) Hördt et al. 2020, 421	sp. nov. [devation in rank from Acetobacter parteurismus subsp. ascenders: De Ley and Frateur 1974 (Approved Lists 1980)] ¹	CCM 3612 (=LMG 1590=NCCB 51001)	32	[1]
Acidithiobacillus ferrianus Norris et al. 2020, 336	ap. nov.	MG (=DSM 107098=JCM 33084)	13	[2]
Actibacterium lipolyticum (Park et al. 2019) Hördt et al. 2020, 43 ¹	comb. nov. [basonym: Confluentimicrobium lipolyticum Park et al. 2019]	SSK1-4 (=CECT 8621=KCTC 42136)	32	[1]
Actibacterium naphthalenivorans (Jeong et al. 2015) Hördt et al. 2020, 43 ³	comb. nov. [basonym: Confluentimicrobium naphthaleniverans Jeong et al. 2015]	NS6 (=DSM 105040=)CM 30828)	32	[1]
Actinomedura physconitrii Zhuang et al. 2020, 684	ap. nov.	LD22 (=CCTCC AA 2018050=JCM 33455)	33	[3]
Affellaceae Hördt et al. 2020, 383	fam. nov.	Afifella	32	[1]
Afipia carboxidovorans (Meyer et al. 1994) Hördt et al. 2020, 43 ⁵	comb. nov. [basonym: Olgotropha carbaxidovorans (ex Meyer and Schlegel 1978) Meyer et al. 1994]	OM5 (=ATCC 49405=DSM 1227)	32	[1]
Abrensiacene Hördt et al. 2020, 381	fam. nov.	Ahrensia	32	[1]
Albibacillus Hördt et al. 2020, 411	gen. nov.	Albibacillus kandeliae	32	[1]
Albibacillus kandeliae (Zhang et al. 2018) Hördt et al. 2020, 43 ^s	comb. nov. [basonym: Raegeria kavdeliae Zhang et al. 2018]	DSM 104293 (=MCCC 1K03284)	32	[1]
Allgaiera Hördt et al. 2020, 413	gen. nov.	Allgaiera indica	32	[1]
Allgaiera indica (Jiang et al. 2014) Hördt et al. 2020, 431	comb. nov. [basonym: Defluritmonas indica Jiang et al. 2014]	20V17 (=DSM 24802=]CM 17871)	32	[1]
Allovhizobian taibaishanense (Yao et al. 2012) Hördt et al. 2020, 431	comb. nov: [basonym: Rhizobiam taibaishanense Yao et al. 2012]	CCNWSX 0483 (=DSM 100021=HAMBI 3214)	32	[1]
Allosediminivita Hördt et al. 2020, 41 ³	gen. nov.	Allowediminivita pacifica	32	[1]
Allowediminivita pacifica (Wu et al. 2013) Hördt et al. 2020, 43 ^s	comb. nov. [basonym: Roseivivax pacificus Wa et al. 2013]	22DY03 (=DSM 29329=JCM 18866)	32	[1]
Allosphingovinicella Hördt et al. 2020, 411	gen. nov.	Allosphingssinicella vermicomposti	32	[1]

Author affiliations: ¹The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel; ²Department of Microbiology & Molecular Genetics, Biomedical Physical Science, Michigan State University, East Lansing, MI 48824-4320, USA: ^{*}Correspondence: Absent Oren advanto genetics, Biomedical Physical Science, and Science, Science,

Validation Lists Priority of names

- Priority in nomenclature is determined by the date of valid publication.
- Thus, since 1980, names effectively published outside IJSEM can only make a claim to priority if they are subsequently published in Validation Lists in issues of IJSB/IJSEM.
- For example, in revisions involving *Clavibacter xyli*, Suzuki *et al.*, in 1999, and Evtushenko *et al.*, in 2000, both proposed the generic name, *Leifsonia*.
- However, the proposal of Suzuki *et al.*,1999 was made directly in IJSEM and therefore took priority.

Notification Lists

Notification that new names and new combinations have appeared in the IJSB or IJSEM

- The names and citations to appear in the Notification Lists are those that are validly proposed in full articles in the IJSB (now IJSEM), an official publication of the ICSP.
- This listing of names published in a previous issue of the IJSEM is provided as a service to bacteriology to assist in the recognition of new names and new combinations.
- This procedure was proposed by the Judicial Commission [Minute II(ii), *Int J Syst Bacteriol* 41 (1991), p. 185].

CFBP: French Collection for Plant-Pathogenic Bacteria

Notification Lists

Notification that new names and new combinations have appeared in the IJSB or IJSEM

- The Notification Lists are published regularly in the:
- International Journal of Systematic Bacteriology (IJSB), or
- From January 2000, in the International Journal of Systematic and Evolutionary Microbiology (IJSEM).
- The first Notification List was published on July 1991.

Notification Lists

Notification that new names and new combinations have appeared in the IJSB or IJSEM

- They are provided as a service to bacteriology to assist in the recognition of new names and new descriptions.
- These lists have no formal status in prokaryote nomenclature except to allow for orthographic corrections (using proper spelling, capitalization and grammar. E.g. *Streptomyces scabies* to *S. scabiei*) to be made.

Notification Lists

Oren and Garrity,2021. Int J Syst Evol Microbiol 2021;71:004816 INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY

LIST OF CHANGES IN TAXONOMIC OPINION Oren and Garrity, Int. J. Syst. Evol. Microbiol. 2021;71:004816 DOI 10.1099/iisem.0.004816

Notification of changes in taxonomic opinion previously published outside the IJSEM list of changes in taxonomic opinion no. 34

Aharon Oren^{1,*} and George M. Garrity^{2,*}

The International Code of Nomenclature of Prokaryotes (Prokaryotic Code) deals with the nomenclature of prokaryotes. This may include existing names (the Approved Lists of Bacterial Names) as well as new names and new combinations. In this sense the Code is also dealing indirectly with taxonomic opinions. However, as with most codes of nomenclature, there are no mechanisms for formally recording taxonomic opinions that do not involve the creation of new names or new combinations. In particular, it would be desirable for taxonomic opinions resulting from the creation of synonyms or emended descriptions to be made widely available to the public. In 2004, the Editorial Board of the International Journal of Systematic and Evolutionary Microbiology (IJSEM) agreed unanimously that it was desirable to cover such changes in taxonomic opinions (i.e. the creation of synonyms or the emendation of circumscriptions) previously published outside the IJSEM, and to introduce a List of Changes in Taxonomic Opinion [Notification of changes in taxonomic opinion previously published outside the IJSEM; Euzéby et al. (2004). Int J Syst Evol Microbiol 54, 1429-1430].

Scientists wishing to have changes in taxonomic opinion included in future lists should send a PDF file of the relevant publication to the IJSEM Editorial Office or to the Lists Editor.

It must be stressed that the date of proposed taxonomic changes is the date of the original publication, not the date of publication of the list. Taxonomic opinions included in the List of Changes in Taxonomic Opinion cannot be considered as validly published nor, in any other way, approved by the International Committee on Systematics of Prokaryotes and its Judicial Commission. The names that are to be used are those that are the 'correct names' (in the sense of Principle 6) in the opinion of the bacteriologist, with a given circumscription, position and rank. A particular name, circumscription, position and rank does not have to be adopted in all circumstances. Consequently, the List of Changes in Taxonomic Opinion must be considered as a service to bacteriology and it has no 'official character', other than providing a centralized point for registering/indexing such changes in a way that makes them easily accessible to the scientific community.

Name/authors:	Proposed as:	Reference
Algibacter lectus Nedashkovskaya et al. 2004 emend. Liu et al. 2021, 1037	emend.	[1]
Algibacter wandonensis Yoon and Park 2013 pro synon. Algibacter lectus Nedashkovskaya et al. 2004	synon.	[1]
Alkanindiges Bogan et al. 2003 emend. Yadav et al. 2021, 381	emend.	[2]
Bacillus ciccensis Liu et al. 2017 pro synon. Cytobacillus solani (Liu et al. 2015) Patel and Gupta 2020*	synon.	[3]
Catenulispora rubra Tamura et al. 2017 emend. Świecimska et al. 2021, 8†	emend.	[4]
Crateriforma Peeters et al. 2021 emend. Kumar et al. 2021, 351	emend.	[5]
Crocinitomicaceae Munoz et al. 2016 emend. Bowman 2020, 9†	emend.	[6]
Cryomorphaceae Bowman et al. 2003 emend. Bowman 2020, 9†	emend.	[6]
Cytobacillus solani (Liu et al. 2015) Patel and Gupta 2020 emend. Guo et al. 2021, 847	emend.	[3]
Gallionellaceae Henrici and Johnson 1935 (Approved Lists 1980) emend. Kojima et al. 2021, 322	emend.	[7]
Gimesia Scheuner et al. 2015 emend. Wiegand et al. 2020, 2011‡	emend.	[8]
Gimesia chilikensis Kumar et al. 2020 emend. Wiegand et al. 2020, 2011	emend.	[8]
Muribaculum intestinale Lagkouvardos et al. 2016 emend. Park et al. 2021, 2845	emend.	[9]

Microbiology Society, 2021

Author affiliations: The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel;

The Nomenclature Codes Rule books

- The Nomenclature Codes (or the Codes of nomenclature) are the rulebooks that govern biological nomenclature.
- After the successful introduction of two-part names for species by Linnaeus it became ever more apparent that a detailed body of rules was necessary to govern scientific names.
- From the mid-nineteenth century onwards there were several initiatives to arrive at worldwide-accepted sets of rules.

The Bacteriological Code History

- For many years, the International Code of Botanical Nomenclature (Botanical Code) was the basis for bacterial nomenclature.
- This is because the versions of the bacterial Code already published (Anonymous,1958;1966 and Buchanan *et al.*,1948) appear not to have been widely read or acted upon, and they came too late to act as a corrective measure.

The Bacteriological Code History

- 1. The early Code for the nomenclature of Bacteria was approved at the 4th International Congress for Microbiology in 1947, but was later discarded.
- 2. International Code of Nomenclature of Bacteria (ICNB) which regulates the nomenclature of archaea and bacteria, first published in 1966.
- 3. The botanical Code was replaced with bacterial Code in 1975.

Bergey's Manual of Determinative Bacteriology (8th ed.) was published in 1974.

The Bacteriological Code History

- Buchanan, R.E.; R. St. John-Brooks and R.S. Breed.1948.
 International bacteriological code of nomenclature, *J. Bacteriol.* 55: 287-306.
- Anonymous.1958. International Code of Nomenclature of Bacteria and Viruses, Iowa State College Press, Ames, IA, USA.
- Anonymous.1966. International Code of Nomenclature of Bacteria, Int. J. Syst. Bact. 16: 459-490.

The First International Microbiological Congress (Paris, 1930) The Second International Congress for Microbiology (London, 1936) The Third International Microbiological Congress (New York, 1939) The Fourth International Microbiological Congress (Copenhagen, 1947) The Fifth International Microbiological Congress (Rio de Janeiro, 1950) The Sixth International Microbiological Congress (Rome, 1953) The Seventh International Congress for Microbiology (Stockholm, 1958) The Eighth International Microbiological Congress (Montreal, 1962) The Ninth International Congress for Microbiology (Moscow, 1966) The Tenth International Congress for Microbiology (Mexico City, 1970) First International Congress of Bacteriology (Jerusalem, 1973) The Twelfth International Congress for Microbiology (Munich, 1978) Thirteenth International Congress of Microbiology (Boston, Massachusetts, 1982) Fourteenth International Congress of Microbiology (Manchester, 1986) Fifteenth International Congress of Microbiology (Osaka, 1990)

Additionally, the history of the Code is available in recent publications (Sneath, 2003;Knapp *et al.*,2004).

The International Nomenclature Codes

- In the course of time these became the present Nomenclature Codes governing the naming of organisms such as:
- International Code of Zoological Nomenclature, ICZN.
- International Code of Nomenclature for Cultivated Plants, ICNCP.
- International Code of Botanical Nomenclature, ICBN.
- International Code of Nomenclature of Bacteria, ICNB (now ICNP).
- International Code of Phytosociological Nomenclature, ICPN.
- International Code of Virus Classification and Nomenclature, ICTV.

The nomenclature of plant pathogenic bacteria (now Prokaryotes)

- The bacterial Code was released in 1975.
- The nomenclature of bacteria including plant pathogenic bacteria is regulated by:
- 1. The Code: International Code of Nomenclature of Bacteria (ICNB), now Prokaryotes (ICNP), and
- 2. The Standards: The International Standards for Naming Pathovars of Phytopathogenic Bacteria.

The Bacteriological Code 1976 Revision of the Code (Lapage *et al.*,1975)

- The Bacteriological Code (BC) was a third set of rules (After plants and animals rules) first developed in 1953 and published in 1958.
- The 1976 revision of the International Code of Nomenclature of Bacteria had two purposes:
- 1. To legislate the new start for bacterial nomenclature at a specified date i.e. January 1, 1980;
- 2. To provide a comprehensive text that would clearly specify the criteria for legitimate publication of correct names, and
- 3. To introduce a novel concept of valid publication to ensure strict priority of all names in future.

The Bacteriological Code 1976 Revision of the Code (Lapage *et al.*,1975)

- The Bacteriological Code governs the scientific names for bacteria.
- The official "Nomenclatural Starting Date" for the current International Code of Nomenclature of Bacteria (ICNB) is January 1,1980.
- At present the name of Bacteriological Code is changed into International Code of Nomenclature of Prokaryotes (ICNP), or 'the Code'.

The Bacteriological Code 1976 Revision of the Code (Lapage *et al.*,1975)

- Some minor editorial changes have been required where the 1975 edition referred to actions in the future.
- Three important reforms were introduced by the revision of the Code published in 1975:
- 1. A new starting document and starting date were achieved with the publication of the Approved Lists of Bacterial Names on 1 January 1980 (Skerman *et al.*,1980), containing about 2,300 names....
- 2. All new names are validly published only in the *International Journal of Systematic Bacteriology* (IJSB), although they may be effectively published elsewhere and then validated by announcement in Validation Lists in the IJSB.
- 3. For valid publication, nomenclatural types must be designated.

The Bacteriological Code 1976 Revision of the Code (Lapage *et al.*,1975) Approved Lists

- Central to the revision of nomenclature was the development of the:
- 1. Approved Lists (Skerman *et al.*, 1980),
- 2. Amended version (Skerman *et al.*,1989) which were to include only names that conformed fully to the revised Code.

The Code The 1976 revision of the Code Approved Lists of Bacterial Names

The Approved Lists of Bacterial Names was published in the International Journal of Systematic Bacteriology (IJSB 30: 225-420,1980) and reprinted in book form to provide for the requirements of the Bacteriological Code (1976 Revision) in initiating a new starting date for bacterial nomenclature, 1 January 1980.

Ad Hoc Committee of the Judicial Commission of the ICSB. First Draft Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. 1976;26:563-599.

The Code The 1976 revision of the Code Approved Lists of Bacterial Names

- According to the 1976 revision of the International Code of Nomenclature of Bacteria (Lapage *et al.*,1975) after 1 January 1980, priority of publication shall date from 1 January 1980 and on that date:
- 1. All names published prior to 1 January 1980, and
- 2. Included in the Approved Lists of Bacterial Names of ICSB (International Committee on Systematic Bacteriology) shall be treated.

Approved Lists of Bacterial Names First edition (Skerman *et al.*,1980)

- In 1973, *ad hoc* Committee was appointed by the Judicial Commission of the International Committee on Systematic Bacteriology (ICSB):
- 1. To compile these names under the title of Approved Lists of Bacterial Names, and
- 2. To publish the lists in the International Journal of Systematic Bacteriology, to become effective on January 1,1980.

In 1966, the International Bulletin of Bacterial Nomenclature and Taxonomy (1951-1965) was continued with new official journal International Journal of Systematic Bacteriology and from January 2000, it was renamed as IJSEM.

Approved Lists of Bacterial Names First edition (Skerman *et al.*, 1980)

Approved Lists of Bacterial Names

edited by

V.B.D. SKERMAN,¹ VICKI MCGOWAN,¹ AND P.H.A. SNEATH² Department of Microbiology, University of Queensland, St. Lucia, Queensland 4067, Australia' and MRC Microbial Systematics Unit, University of Leicester, Leicester LE1 England 7RH,8

on behalf of

The Ad Hoc Committee of the Judicial Commission of the ICSB

INTRODUCTION

At the meeting of the Judicial Commission of the ICSB held in Jerusalem on the 29th March, 1973 an Ad Hoc Committee was appointed (Minute 22) to organize a review of incertae sedis, or under other headings should the currently valid names of bacteria with the be circulated; that all Subcommittees on object of retaining only names for those taxa Taxonomy of the ICSB should be asked for which were adequately described and, if advice on the retention of taxa for which the cultivable, for which there was a Type, Neotype Subcommittees were responsible and that or Reference strain available; to compile these specialists be approached for advice on other names under the title of Approved Lists of taxa - only a small list of taxa remained to be Bacterial Names and to publish the lists in the considered by the Ad Hoc Committee itself. International Journal of Systematic Bacteriolo- Advice was also sought on additional names of gy, to become effective on January 1, 1980. This date would then replace May 1, 1753 (International Code of Nomenclature of Bacteria and Viruses. Rule 10) as the new date for for the inclusion of names validly published determining priorities for names of new taxa.

The members of the Ad Hoc Committee originally appointed to oversee the task were approved by the Ad Hoc Committee. Each S.P. Lapage, H.P.R. Seeliger and V.B.D. specialist was asked to associate two others in Skerman (Chairman). Following his election as reaching a decision on name retention. The President-Elect of IAMS, H.P.R. Seeliger Chairman accepted the responsibility for resigned from the Committee and was replaced coordination of work associated with the by J.G. Holt. P.H.A. Sneath, as Chairman of selection of generic names and specific and the Judicial Commission, was coopted to the subspecific epithets and P.H.A. Sneath for the Committee. This Committee was responsible for the editing of the first draft of the Approved Lists of Bacterial Names published in the IJSB Names of Genera, Species and Subspecies: (26, 1976, 563-599).

The Ad Hoc Committee was reconstituted by the Judicial Commission during its meetings subspecies were circulated by airmail in April, at the International Congress of the IAMS in 1976 and a draft list of names recommended Munich in September, 1978, with V.B.D. for retention published in the USB (26, 1976, Skerman (Chairman), P.H.A. Sneath (newly 563-599) together with the list of those people elected Chairman of the ICSB) and L.G. associated with that stage of the project. Wayne (newly elected Chairman of the Judicial Reference may be made to the draft list for Commission) as Committee members. This Committee was assigned wide powers to the information. complete the work on the Lists and arrange publication.

basis for inquiry, all names which had been included in the eighth edition of Bergey's Manual of Determinative Bacteriology, whether listed as recognised species, synonyms, species taxa which had been validly published since the publication of the Manual. Special provision had been made in the Code of Nomenclature after the 1st January, 1978 (Rule 24a).

The initial Committee agreed that, as a

A list of specialists was drawn up and names of higher taxa.

The Lists of names of species and details of the procedures adopted in processing

The object of publishing the draft list was to enable microbiologists, in general, to submit

Approved Lists of Bacterial Names First edition (Skerman *et al.*,1980)

- The Approved Lists of Bacterial Names were edited by V.B.D. Skerman, V. McGowan, and P.H.A. Sneath on behalf of the Ad Hoc Committee of the Judicial Commission of the International Committee on Systematic Bacteriology (now, the International Committee on Systematic of Prokaryotes, ICSP).
- Names not on the Approved Lists had "no further standing in nomenclature" (Rule 24a).
- Despite every care, errors in the text have been detected and these errors have now been corrected in this Amended Edition.

Approved Lists of Bacterial Names Two lists

About 2,300 were retained in the Approved Lists

- When bacteriologists agreed to make a new start in bacteriological nomenclature, they were faced with tens of thousands of names in the literature of the past.
- Of these, about 2,300 names were retained in the Approved Lists.
- The Approved Lists of Bacterial Names consist of two lists which were published on 1 January 1980 in the International Journal of Systematic Bacteriology (IJSB):
- 1. **Approved List 1**: A list for names of taxa above the rank of genus (family and above) which contains 124 names.
- 2. Approved List 2: A list for names of genera, species and subspecies (2212 names).

Approved Lists of Bacterial Names First edition (Skerman *et al.*, 1980)


- This reduced the number of named species from ~ 28000 (Buchanan *et al.*,1966) to ~ 2000 (Skerman *et al.*,1980).
- Adoption of the Approved Lists resulted in numerous names of plant pathogenic species being abolished.
- These included such names as:
- Pseudomonas fabae, a pathogen on broad beans,
- Pseudomonas tectonae on teak,
- *Pseudomonas gardneri* on tomato (the only valid name), and
- Pseudomonas adzukicola on adzuki beans.

Approved Lists of Bacterial Names Amended edition (Skerman *et al.*,1989)

- Despite every care, errors in the text have been detected and many of these errors have been corrected in the Approved Lists of Bacterial Names (Amended Edition) published in 1989.
- This work contains all names that were acceptable at that time and since then there has been one major update (Skerman *et al.*,1989).
- The purpose of the Approved List is to ensure stability and consistency in bacterial taxonomy.
- Names not appearing in the List can still be used but normally are enclosed within inverted commas (i.e. ` ') when appearing in written text.

Approved Lists of Bacterial Names Amended edition (Skerman *et al.*,1989)

- Approved Lists of Bacterial Names (Amended) and Index of the Bacterial and Yeast Nomenclatural Changes.
- Author: V.B.D. Skerman, V. McGowan, and P.H.A.. Sneath and W.E.C. Moore and L.V.H. Moore.
- Number of Pages: 298
- Publication Date: 1989
- Publisher: ASM Press

The Code Revised editions of the Code 1990 Revision

Tatemanismal Code of Noneroclature of Rastenia

199 Reside

- The Bacteriological Code (1990 Revision) was published in 1992, and it is freely available on the Internet: http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=icnb.
- The proposal to rename the International Code of Nomenclature of Bacteria (ICNB) to International Code of Nomenclature of Prokaryotes (ICNP) was unanimously accepted by International Committee on Systematic Bacteriology (ICSB) (now ICSP).
- According to Rule 1b, alterations to this Code have been made by the International Committee on Systematic Bacteriology (ICSB) from January 2000 as the International Committee on Systematic of Prokaryotes, ICSP).

The Code Revised editions of the Code 1990 Revision

International Cade of Nonconfuture of Ractoria

191 Berlink

- The latest version to be printed in book form is the 1990 Revision (which may be referred to as the Bacteriological Code (1990 Revision):
- Lapage S.P., Sneath P.H.A., Lessel E.F., Skerman V.B.D., Seeliger H.P.R., Lark W.A. (eds).1992. International Code of Nomenclature of Bacteria (1990 Revision). American Microbiological Society, Washington DC., USA.
- Sneath, P.H.A. and Brenner, D.J.1992. Official Nomenclature Lists. ASM News, 58, 175.
- Young J.M., Bradbury J.F., Davis R.E., Dickey R.S., Ercolani G.L., Hayward A.C., Vidaver A.K. 1991. Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Review of Plant Pathology 70: 211-221.

The Code Revised editions of the Code 1990 Revision

International Code of Nonconstature elikacteria

1999 Revision

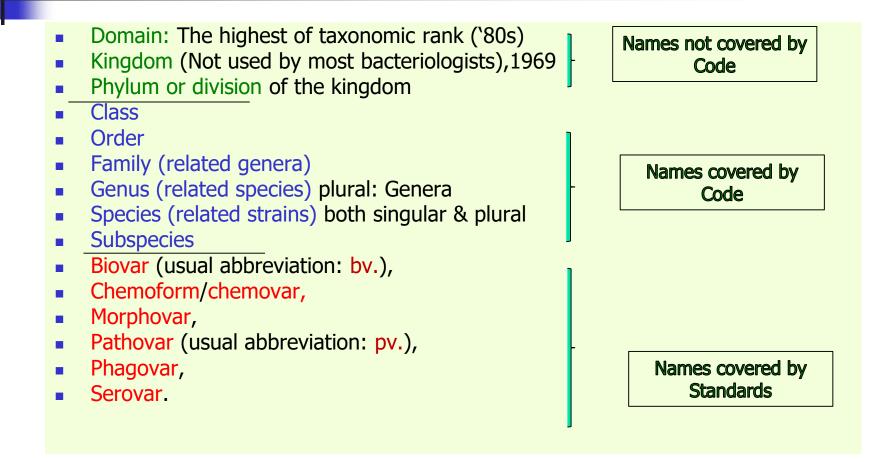
- The 1990 revision supersedes all previous editions.
- It shall be cited as Bacteriological Code (1990 Revision) and will apply from the date of publication (1992) [Rule 1a].
- The Bacteriological Code (1990 Revision) applies to all procaryotes.
- The procaryotes include groups known by such names as:
- Bacteria, Eubacteria, Archaea, Archaeobacteria, Cyanobacteria, Cyanophyceae, Schizomycetes, Schizophycetes.

Tindall, B.J.1999. Proposals to update and make changes to the Bacteriological Code. *Int. J. Syst. Evol. Microbiol.*,1999 (49)1309-1312.

The Standards Pathovar system of nomenclature

 In order to formalize the use of pathovar names, in ad hoc meeting in February 1978, the Committee on Taxonomy of Plant Pathogenic Bacteria of the ISPP (ISPP-CTPPB) was decided to publish a list of pathovar names known as the International Standards for Naming Pathovars of Phytopathogenic Bacteria (The Standards).

The Standards Pathovar system of nomenclature


- At the introduction of the Approved List many old bacterial names were abandoned and strict rules for publication of new ones came into force.
- Many distinct plant pathogens were rejected from the Approved List, a physiologically too similar to warrant separation as species or subspecies.
- Plant pathologists therefore adopted a 'pathovar nomenclature' outside the jurisdiction of the Code.

The Standards Pathovar system of nomenclature Pathovar concept

Those names that did not meet these criteria but were important for plant pathologists it was hoped that the ICSB (now ICSP, International Committee on Systematic Prokayotes) would give some recognition to the latter by acceptance of pathovars as an infrasubspecific rank within the Code.

The Standards

Pathovar system of nomenclature The preferred names of infrasubspecific subdivisions

The Standards Pathovar system of nomenclature Dye *et al.*,1980

 Lists of pathovars and standards for publication of new pathovars have been published (Dye *et al.*,1980).

Dye D.W., Bradbury J.F., Goto M., Hayward A.C., Lelliott R.A., Schroth M.N., 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotypes. *Review of Plant Pathology* 59:153-168.

The Standards Pathovar system of nomenclature Revisions for standards

- The revisions (Young *et al.* 1991) accepted at the ISPP Conference on Plant Pathogenic Bacteria, Versailles, 1992.
- Revisions for standards were made by Young *et* al.,2001c).
- Administration and interpretation of the Standards is by the International Society of Plant Pathology (hereafter called 'the ISPP Bacterial Taxonomy Committee.

Young J.M., Bull C.T., De Boer S.H., Firrao G., Gardan L., Saddler G.E., Stead D.E., Takikawa Y., 2001c. International standards for naming pathovars of phytopathogenic bacteria. http://www.isppweb.org/about_tppb_naming.asp. The list is updated annually and is available on www.bspp.org.uk/ispp/nppb.html

The Standards Pathovar system of nomenclature Naming of a pathovar is free and not determined by rules of the code

The role of the Standards is similar to that of the Code except that the Standards deal specifically with the naming of pathovars of plant pathogens.

The Standards Pathovar system of nomenclature Dye *et al.*,1980

- The Standards are derived in general from the Principles which form the basis of the Code.
- They are not intended to replace or modify in anyway the existing Rules and Recommendations of the Code.
- These Standards will apply from 1 January 1980 (Dye *et al.*,1980).

The Standards Pathovar system of nomenclature

- 1. The principal requirements of the Code for legitimate names are essentially the same for pathovars.
- 2. Requirement of submission of the new pathotype strains at least to two international culture collections located in two different countries to ensure stability and success.
- 3. Priority for pathovar names published after January 1, 1980 is determined according to the date of effective publication of legitimate pathovar names (list of pathovars names published with the standards).
- 4. CTPPB of ISPP (Committee on Taxonomy of Plant Pathogenic Bacteria of the ISPP) maintains a list of pathovar names and pathotype strains.

The Standards Pathovar system of nomenclature Pathovar type strain

- Naming of a pathovar is free and not determined by rules of the code.
- This also holds true for subdivision of a bacterial species or subspecies into:
- Pathological races and biochemical, serological or phage varieties (resp. biovars, serovars or phagovars), and
- 2. Genetic groups.
- For an example of subdivision of *Ralstonia* solanacearum into races, biovars and genetic RFLP groups.
- When new pathovars are described generally the above-mentioned international standards (including the indication of a pathovar type strain) are followed.

Supplementary Lists of Bacterial Names Lists of plant pathogenic bacteria **Comprehensive lists**

- The base-line for bacterial names are the Approved Lists (Skerman *et al.*, 1980), which may not be added to.
- The International Code of Nomenclature of Bacteria (1990) Revision) is the cornerstone of prokaryotic nomenclature.
- New bacterial names has standing in nomenclature, if one of the following criteria is met:
- The name is cited in the Approved Lists of Bacterial Names; 1.
- The name is published in papers in the IJSB or in the IJSEM 2. and conforms to requirements laid down in the bacteriological Code.
- The name is validly published by announcement in a Validation 3. List.
- Amendments can also be found directly online at the website 4. of Euzéby/different comprehensive lists.

Supplementary Lists of Bacterial Names Lists of plant pathogenic bacteria Comprehensive lists

- Subsequently, a supplementary list of names of pathogens was produced (Young *et al.*,1991).
- A complete list of all plant pathogenic bacteria was published (Young *et al.*,1996) and after 2000, the 1996 list and annual updates (Young *et al.*,2004 and 2005) were maintained on the ISPP (International Society for Plant Pathology) Bacterial Taxonomy Committee website, in anticipation of further hardcopy publications.
- The last list was updated by Bull *et al.*,2014.

Supplementary Lists of Bacterial Names Lists of plant pathogenic bacteria Comprehensive lists

- Young, J.M., J.F. Bradbury, R.E. Davis, R.S. Dickey, G.L. Ercolani, A.C. Hayward and A.K. Vidaver.1991.
 Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Rev. Plant Pathol. 70:211-221.
- Young, J.M., G. Saddler, Y. Takikawa, S.H. De Boer, L. Vauterin, L. Gardan, R.I. Gvozdyak and D.E. Stead.1996.
 Names of plant pathogenic bacteria 1864-1995. Rev. Plant Pathol. 75:721-763.
- Bull, C.T., T.A. Coutinho, T.P. Denny, G. Firrao, M. Fischer-Le Saux, X. Li, G.S. Saddler, M. Scortichini, D.E. Stead and Y. Takikawa.2014. List of New Names of Plant Pathogenic Bacteria (2011-2012). Journal of Plant Pathology, 96 (2):223-226.

Euzéby website LPSN: Creator by J.P. Euzéby

LPSN lists all validly published names of prokaryotes, from the Approved Lists and culled from IJSB/IJSEM and its Validation Lists

- The List of Prokaryotic Names with Standing in Nomenclature (LPSN; http://www.bacterio.net) is a database that lists the names of prokaryotes (Bacteria and Archaea) that have been validly published:
- 1. In the International Journal of Systematic and Evolutionary Microbiology (IJSEM) directly, or
- 2. By inclusion in a Validation List, under the Rules of International Code of Nomenclature of Bacteria.
- Currently there are 15974 taxa listed.
- In addition, LPSN has an up-to-date classification of prokaryotes and information on prokaryotic nomenclature and culture collections.

Jean, Paul, Marie, EUZÉBY

Retired professor of microbiology, immunology (École Nationale Vétérinaire de Toulouse). 148

Euzéby website LPSN: Creator by J.P. Euzéby LPSN lists all validly published names of prokaryotes, from the

Approved Lists and culled from IJSB/IJSEM and its Validation Lists

Bacteriological Code (1990 Revision)

The International Code of Nomenclature of Prokaryotes (formerly the International Code of Nomenclature of Bacteria) is an official publication of the x International Committee on Systematics of Prokaryotes (formerly the International Committee on Systematic Bacteriology) [Article 12 of the Statutes of the International Committee on Systematic Bacteriology].

The change of the name International Code of Nomenclature of Bacteria to International Code of Nomenclature of Prokaryotes was decided and approved by the x Judicial Commission and the x ICSP (IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. August 1999, Sydney, Australia.). Reference: DE VOS (P.) and TRÜPER (H.G.): Judicial Commission of the International Committee on Systematic Bacteriology IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 14, 15 and 18 August 1999, Sydney, Australia. Int. J. Syst. Evol. Microbiol. 2000, 50, 2239-2244. [Original article in IJSEM Online]

The 1990 revision supersedes all previous editions. It shall be cited as *Bacteriological Code* (1990 Revision) and will apply from the date of publication (1992) [Rule 1a].

The *Bacteriological Code* (1990 Revision) applies to all procaryotes. The procaryotes include groups known by such names as *Bacteria, Eubacteria, Archaea, Archaebacteria, Archaeobacteria, Cyanobacteria, Cyanobacteria, Cyanophyceae, Schizophycetes, Schizophycetes* [1, 2, 3].

According to Principle 2 (see the footnote 1), the nomenclature of Prokaryotes is not independent of botanical and zoological nomenclature [3]. When naming new taxa in the rank of genus or higher, due consideration is to be given to avoiding names which are regulated by the Zoological Code and the International Code of Botanical Nomenclature. For an example, see: × "Illegitimate names and epithets". Other examples are given in "List of Prokaryotic names with Standing in Nomenclature" (see: × *Microcyclus* Ørskov 1928 (Approved Lists 1980), × *Pirella* Schlesner and Hirsch 1984, × *Rhizomonas* van Bruggen *et al.* 1990, × *Serpula* Stanton *et al.* 1991).

References:

1 Judicial Commission, Minutes of the Meetings, 2 and 6 July 1994, Prague, Czech Republic. (Minute 8). Int. J. Syst. Bacteriol., 1995, 45, 195-196.

2 ICSB, XVIth International Congress of Microbiology, Minutes of the Meetings, 2, 3 and 5 July 1994, Prague, Czech Republic. [Minute 12 (iv)]. *Int. J. Syst. Bacteriol.* 1995, **45**, 613-615.

3 DE VOS (P.) and TRÜPER (H.G.): Judicial Commission of the International Committee on Systematic Bacteriology. IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 14, 15 and 18 August 1999, Sydney, Australia. *Int. J. Syst. Evol. Microbiol.* 2000, **50**, 2239-2244. [Original article in IJSEM Online]

Genera and taxa above the rank of genus: A-C

Genera and taxa above the rank of genus: D-L

Genera and taxa above the rank of genus: M-R

Genera and taxa above the rank of genus: S-Z

Names validly published since 01 January 1998

Other categories and changes covered by the Rules

Candidatus

Some prokaryotic names without standing in nomenclature

Other categories and changes not covered by the Rules

Nomenclature

Collections Miscellaneous

Jean, Paul, Marie, EUZÉBY

Retired professor of microbiology, immunology (École Nationale Vétérinaire de Toulouse). 149

LPSN Home LPSN News About LPSN Contact Resource description All names A-C D-L M-R S-Z Classifications Support

bacterio.net

Riboton

Please support LPSN!

ISPP International Society for Plant Pathology

Affiliations

- The ISPP (founded in 1968) is a member of:
- 1. The International Union of Biological Sciences (IUBS);
- The International Union of Microbiological Societies (IUMS);
- 3. ISPP has representation at ICSB(International Committee on Systematic Bacteriology (now ICSP).
- 4. In liaison (co-operation) with the UN Food and Agriculture Organization (FAO).

$IUMS \longrightarrow ICSP \longrightarrow ISPP \longrightarrow ISPP-CTPPB Committees$

Administration and interpretation of the Standards is by the ISPP Bacterial Taxonomy Committee.

ISPP International Society for Plant Pathology

- ISPP has representation at ICSB (International Committee on Systematic Bacteriology (now ICSP).
- The Executive Committee of the International Society for Plant Pathology (ISPP) set up a Committee on Taxonomy of Phytopathogenic Bacteria (ISPP Committee).

ISPP International Society for Plant Pathology

- The general objective of the ISPP:
- 1. To promote the worldwide development of plant pathology;
- 2. The dissemination of knowledge about plant diseases and plant health management;
- 3. Sponsoring an the International Congress of Plant Pathology (ICPP), at intervals of 5 years, and sponsoring other international meetings on plant pathology and related subjects.
- 4. The Society establishes committees to consider and report on special fields or problems in plant pathology.
- 5. The Society organizes other activities including the publication of journals and newsletters, websites, as approved by the Executive Committee.

ISPP ISPP website

- The ISPP Committee on the Taxonomy of Bacterial Plant Pathogens has created a website at: http://www.isppweb.org/about_tppb.asp.
- The major items are posted:
- 1. The names and addresses of the ISPP Committee on the Taxonomy of Plant Pathogenic Bacteria.
- 2. An up to date list of names of plant pathogenic bacteria;
- 3. The International Standards for Naming Pathovars;
- 4. A discussion news group.

ISPP ISPP website

International Society for Plant Pathology Promoting World-Wide Plant Health and Food Security

	Home Congresses Commission on Global Food Security Newsletter Archive Subject Matter Committees Global Plant Health Assessment Resources Administration
> TPPB Home> Membership of the Committee	nome congresses commission of Global Pool Security Newsletter Archive Subject Platter committees Global Plant Realth Assessment Resources Administration Taxonomy of Plant Pathogenic Bacteria News:
> International Standards> Bacterial Names	Please contact the convener marion.le-saux@inrae.fr with questions about any of the published lists (below).
 Submit a New Name Committee Business 	Publications:
	Bull, C.T., Coutinho, T.A., Denny, T.P., Firrao, G., Fischer-Le Saux, M., Li, X., Saddler, G.S., Scortichini, M., Stead, D.E., Takikawa, Y., 2014. List Of New Names Of Plant Pathogenic Bacteria (2011-2012). Journal of Plant Pathology 96:223- 226. ">http://sipav.org/main/jpp/index.php/jpp/article/view/3127>
	Bull, C. T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead, Y. Takikawa, 2012. List of New Names of Plant Pathogenic Bacteria (2008-2010). Journal of Plant Pathology 94 (1): 21-27. ">http://sipav.org/main/jpp/index.php/jpp/article/view/2437>
	Bull, C. T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead, Y. Takikawa, 2010. Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007. Journal of Plant Pathology 92:551- 592.
	392. Download PDF <http: bull%20et%20al.%202010%20jpp%20list.pdf="" smc_files="" www.isppweb.org=""></http:>
	Bull, C. T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead, Y. Takikawa, 2008. Demystifying Nomenclature of Bacterial Plant Pathogens. Journal of Plant Pathology 90:403-417. Download PDF http://www.isppweb.org/SMC_Files/Bull%20at%20al%2010vitedReview_403.pdf
	Taxonomy of Plant Pathogenic Bacteria - Committee members:
	M. Fischer-Le Saux (Convener), UMR de Pathologie Vegetale, INRA, BP 60057, 49071 Beaucouze Cedex, France e-mail:
	T.A. Coutinho (Vice convener), Department of Microbiology and Plant Pathology Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa e-mail:
	C.T. Bull , Professor & Department, Head Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, 212 Buckhout Lab, University Park, PA 16802 USA e-mail:
	G. Firrao, Dipartimento di Biologia Applicata alla Difesa delle Piante, Universita, via Scienze 208, 33100 Udine, Italy e-mail:
	X. Li, Canadian Food Inspection Agency, Charlottetown Laboratory, 93 Mount Edward Road, Charlottetown, PE C1A ST1, Canada email:
	M. Scortichini, C.R.A Istituto Sperimentale per la Frutticoltura, Via di Fioranello, 52, 00134 Roma, Italy e-mail:
	Y. Takikawa, Faculty of Agriculture, Shizuaka University, 836 Ohya, Shizuaka 422-8529, Japan e-mail:

ISPP ISPP website Promoting World-Wide Plant Health and Food Security

International Society for Plant Pathology

Promoting World-Wide Plant Health and Food Security

> About SMC's

- > Crop Losses
- > Chemical Control
- > Environmental Effects on Plants
- > Epidemiology
- > Forest Pathology
- > Fusarium
- > Grapevine Trunk Diseases
- > Oomycetes
- > Plant Pathogenic Bacteria
- Plant Virus Epidemiology
- Plant Quarantine and Biosecurity
- Postharvest Pathology
- > Rhizoctonia
- > Sclerotinia
- Seed Pathology
- Taxonomy of Plant Pathogenic Bacteria
- > Teaching

ISPP Subject Matter Committees

Current Status of the ISPP Subject Matter Committees

The ISPP Subject Matter Committees (SMCs) are specialist committees established (or endorsed) by the International Society for Plant Pathology to address and report on special fields or problems in plant pathology (ISPP Statute 5 (b)).

Home Congresses Commission on Global Food Security Newsletter Archive Subject Matter Committees Resources Administration

- An ISPP Subject Matter Committee generally aims at the following objectives:
 - 1. Consider or establish in relation to their function within a particular field of plant pathology key norms, benchmarks and
 - recommendations for their peers as well as national and international bodies,
 - 2. Provide advice to ISPP, associated societies, or other national and international bodies,
 - 3. Laise as necessary with other ISPP Committees and national and international interest groups to optimize collaborations,
 - Assist and advise the ISPP Executive and the organizers of the International Congress of Plant Pathology (ICPP) in the development of (ICPP) technical sessions, workshops and field visits relevant to their specialist field,
 - Organize specialist workshops, conferences and publications relevant to the field of plant pathology addressed by the Subject Matter Committee,
 - 6. Develop and maintain web related materials relevant to the subject, and
- 7. Provide news items of relevance for the ISPP Newsletter.
- Additionally, an ISPP Subject Matter Committee must:
 - 8. Provide a report to ISPP Council at the International Congress of Plant Pathology.

Frequently Asked Questions (FAQ)

How do I enquire about a Subject Matter Committee?

Subject Matter Committees are small groups of individuals variously chosen by a Committee Chair, the ISPP Executive and/or the Committee with a view to geographic diversity and breadth of expertise. Generally a Committee might consist of six to 24 members.

Some Committees also have a larger mailing list of interested individuals and any enquiries about a Committee should be addressed to the Committee Chair, the ISPP Business Manager or the Vice President responsible (Dr Serge Savary in 2013-2018).

For established Committees, the ISPP Business Manager can also setup a mailing list form on the web page for the Committee to allow other

Current activities of ISPP International Newsletter on Plant Pathology

- International Newsletter on Plant Pathology is an official publication of the Society:
- 1. To inform members of the Society, and others, of the activities of the Society and of related matters.
- 2. An archive of the Newsletter covering issues published from February 1998 to date are available on this website.
- 3. Up dating new names list;
- 4. Developing strategy for on-line submission of new names;
- 5. Discussing merit and strategies for publishing comprehensive and annual names lists;
- 6. Writing paper on bacterial nomenclature.
- 7. Contributions to the International Congress of Plant Pathology (ICPP).

ISPPWeb,2008

ISPP & Notification of a newly proposed names for bacterial plant pathogens Submit a New Names

International Socie	ty for Plant Pathology	y			
Home International Congresses	Food Security Newsletter	Subject Matter Committees	Resources Languag	e Translation Administration	TF Administration
Welcome to ISPPWeb TPPB Home Please s Membership of the Committee International Standards Bacterial Names Submit a New Name	submit a separate form for each prop Notification of a r	newly proposed name for	bacterial plant patho	gens.	
Committee Business	Full Name				
	E-mail * ex: myname@example.com				
	Year of the publication *				
	Last name of all authors *				
	e.g., Catara, Sutra, Morineau, Ach	ouak, Christen, & Gardan			
	Complete Citation *				

Note: This option is currently disabled on the site.2021

ISPP & Notification of a newly proposed names for bacterial plant pathogens (Continued)

Compl	ete	Citatio	on '

Please use this format; Catara, V.; Sutra, L.; Morineau, A.; Achouak, W.; Christen, R.; Gardan L. (2002) Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. International Journal of Systematic and Evolutionary Microbiology 52, 1749–1758.

Newly proposed name and culture collection accession numbers:

Newly proposed name

e.g., Pseudomonas mediterranea

Culture collection accession numbers for type material

e.g., ATCC 13889; CFBP 2038; ICMP 5709; LMG 2238; NCPPB 806; CFBP 5447; ICMP 14184

Reference number from local collection for type material

e.g., BS71

Former name if applicable

ISPP & Notification of a newly proposed names for bacterial plant pathogens (Continued)

Comments		
Enter the message as it's shown *		
-nose-		
<u> </u>		

The other codes

A uniform nomenclatural system for all organisms

The other codes BioCode Biological nomenclature

- A term proposed in 1990 for any system of letters or numbers used with or in place of the name of a taxon.
- The IUBS/IUMS International Committee on Bionomenclature (ICB) presented the first Draft BioCode in 1997, followed by the Draft BioCode 2011.
- A more radical approach is to replace all existing Codes by a BioCode, basically a synthesis of the existing Codes.
- The draft of BioCode seeks simple rules to provide.
- It has yet to be formally accepted.

The other codes BioCode A uniform nomenclatural system for all organisms

- The **BioCode** attempts to:
- 1. produce a unified code for the nomenclature of all life.
- 2. It includes all the major bionomenclatural codes such as bacteriological, botanical and zoological, with special provision for viruses and cultivated plants);
- 3. Governs the formation and choice of scientific names;
- 4. But not the definition of the taxa themselves.

The other codes BioCode BioCode draft (2000) and revised BioCode draft (2011)

- The originally planned implementation date for the BioCode draft was January 1, 2000, but agreement to replace the existing Codes was not reached.
- In 2011 a revised BioCode was proposed that, instead of replacing the existing Codes, would provide a unified context for them, referring to them when necessary.
- Changes in the existing codes are slowly being made in the proposed directions.

The BioCode

Not cover taxa below the rank of subspecies

- The BioCode:
- will not cover taxa below the rank of subspecies and therefore will not directly affect the working of the ISPP Subcommittee for Taxonomy of Plant Pathogenic Bacteria (ISPP-CTPPB), and
- 2. their published guidelines for the naming of infraspecific taxa such as pathovars.

BioCode References

- 1. Biological Nomenclature for the 21st Century- Proceedings of a symposium on the draft BioCode.
- 2. Greuter, W., Hawksworth, D.L., McNeill, J., Mayo, M.A., Minelli, A., Sneath, P.H.A., Tindall, B.J., Trehane, P., & Tubbs, P. (1996). Draft Biocode: the prospective international rules for the scientific names of organisms. Taxon 45: 349-372.
- 3. Greuter W; Hawksworth DL; McNeill J; Mayo MA; Minelli A; Sneath PHA; Tindall BJ; Trehane P; Tubbs P (eds) (1998). Draft BioCode (1997): the prospective international rules for the scientific names of organisms. Taxon 47: 127-150.

Other codes PhyloCode

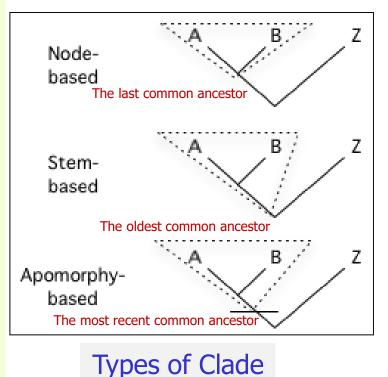
PhyloCode first draft (2000) and revised PhyloCode draft (2006)

- Another Code in development since 1998 is the phylocode.
- The PhyloCode appears to get more publicity than support.
- The first draft of PhylCode was published in April 2000.
- The current version of the PhyloCode was posted in June 2006 and includes many substantive modifications of the previous version.

Cantino, PD and de Queiroz K.2009. PhyloCode: A Phylogenetic Code of Biological Nomenclature. Version 4c. http://www.ohiou.edu/phylocode/index/html. International Society for Phylogenetic Nomenclature.

The other codes PhyloCode Rules governing phylogenetic nomenclature

- Some authors encountered problems in using the Linnean system in phylogenetic classification.
- The phylocode was proposed to regulate what their creators called phylogenetic nomenclature instead of the traditional Linnaean nomenclature (that is, it requires phylogenetic definitions as a "type" attached to every name, and does not contain mandatory ranks).


The other codes PhyloCode Rules governing phylogenetic nomenclature

- A phylogenetic Code of biological nomenclature.
- An integrated set of principles and rules governing the naming of taxa and the application of taxon names that is based on the principle of common descent.
- There is also debate concerning development of a phylocode to name clades of phylogenetic trees, rather than taxa.

Cantino, PD and de Queiroz K.2009. PhyloCode: A Phylogenetic Code of Biological Nomenclature. Version 4c. http://www.ohiou.edu/phylocode/index/html. International Society for Phylogenetic Nomenclature.

The PhyloCode

- Three ways to define a clade for use in a cladistic taxonomy.
- 1. Node-based: The last common ancestor of A and B and all its descendants.
- 2. Stem-based: All descendants of the oldest common ancestor of A and B that is not also an ancestor of Z.
- 3. **Apomorphy-based**: The most recent common ancestor of A and B possessing a certain apomorphy (derived character), and all its descendants.

Plesiomorphic = "primitive" character (found in common ancestor). **Apomorphy =** "advanced" character (a character in a new state, not the primitive one).

Organization

The Code Statutes Organization

- The International Committee on Systematic Bacteriology, ICSB (now The International Committee on Systematic of Prokaryotes (ICSP) was established by the International Association of Microbiological Societies (now IUMS).
- IUMS is the organization responsible:
- 1. The International Congresses on Microbiology (IUMS Congresses), and
- 2. The International Committee on Systematic of Prokaryotes (ICSP).
- Organization relationships:
- ICSB/ICSP of the International Union of Microbiological Societies (IUMS).
- *Ad hoc* Committee of the Judicial Commission of ICSB/ICSP.

IUMS> ICSP> Judicial Commission> *ad hoc* Committees

The International Union of Microbiological Societies History and Statutes

- The International Union of Microbiological Societies was founded in 1927 (over 80 years) as the International Society for Microbiology.
- In 1980, the International Association of Microbiological Societies (IAMS) changed its name to the International Union of Microbiological Societies (IUMS) and acquired independence as a Union.
- It was accepted as a member of the International Council of Scientific Unions (ICSU) in 1982.
- IUMS is one of the 29 Scientific Unions of International Council of Scientific Unions (ICSU), a non-governmental organization.
- IUMS acts as an umbrella organization for these scientific research activities.

The International Union of Microbiological Societies (IUMS) The current IUMS statues

- The IUMS currently comprises:
- 117 Microbiological societies and national committees in 67 countries;
- 1 International organization as full members;
- 7 Microbiological societies, and
- 11 Multinational organizations as associate members.
- Because of its broad contact with thousands of microbiologists worldwide, the IUMS can be regarded as the global voice of microbiology.

The International Union of Microbiological Societies (IUMS) IUMS scientific activities

- Most of the work under the umbrella of IUMS is conducted by the three divisions within IUMS and, in particular, by their committees, commissions and federations:
- A. Three Divisions of:
- 1. Bacteriology & Applied Microbiology (BAM);
- 2. Mycology, and
- 3. Virology,
- And by:
- 1. six specialist international committees,
- 2. eight international commissions, and
- 3. two international federations.

IUMS

Organization: IUMS committees, commissions and federations (COMCOFs)

- The major scientific activities of IUMS take place within the international COMCOFs.
- These *ad hoc* committees are established with one of the three divisions (Bacteriology & Applied Microbiology (BAM), Mycology and Virology).
- Some of the currently exist committees, commissions and federations are:
- 1. International Committee on the Systematic of Prokaryotes (ICSP);
- 2. International Committee on Food Microbiology and Hygiene (ICFMH);
- 3. International Commission of Microbiological Specification for Food (ICMSF);
- 4. World Federation of Culture Collections (WFCC);
- 5. International Commission on Bionomenclature and Bioinformatics (ICBB);
- 6. International Commission on Antigens and Molecular Diagnostics (ICAMD).

The International Union of Microbiological Societies (IUMS) IUMS scientific activities

- Their major activities include:
- 1. The classification and nomenclature of bacteria, fungi and viruses,
- 2. Food microbiology,
- 3. Medical microbiology and diagnostics,
- 4. Culture collections,
- 5. Education, and
- 6. Biological standardization.

IUMS IUMS Divisions

- The Union is composed of three Divisions, each concerned with a major microbiological science.
- Division of Bacteriology and Applied Microbiology (BAM): The aims of the Division of Bacteriology and Applied Microbiology are to further bacteriology and related sciences throughout the world in research, education and services.
- 2. Division of Mycology: To further the discipline of mycology,...
- 3. Division Virology: To further the discipline of virology,...
- The Union provides financial assistance to Divisions for operating expenses and scientific purposes.

IUMS Objectives

- The objectives of the International Union of Microbiological Societies are to:
- 1. Promote the study of microbiological sciences internationally;
- 2. Initiate, facilitate and coordinate research and other scientific activities which involve international cooperation;
- 3. Promote the publication of international study and research;
- Promote the organization of international conferences, symposia and meetings and assist in the publication of their reports;
- Represent microbiological sciences in the International Council of Scientific Unions and maintain contact with other international organization.


IUMS Affiliation to the Union

- Affiliation to the Union is in three categories:
- 1. Member Societies (National and International);
- 2. Associate Societies (National and International);
- 3. Supporting Organizations.
- At present, IUMS also has 96 national member societies and 26 associate member societies adhering to the Union.
- These societies are spread throughout the world and IUMS represents an important link for instance by organizing International Conferences at regular intervals.

Statutes and activities of ICSP The subcommittees deal with the taxonomy of different groups of bacteria and archaea

- The International Committee on Systematic Prokaryotes (formerly the ICSB) was established by the International Association of Microbiological Societies (IAMS presently as IUMS).
- The Committee was founded in 1930 and is responsible for all matters related to nomenclature and taxonomy of prokaryotes.
- The ICSP consists of:
- 1. An executive board,
- 2. The members of the Judicial Commission, and
- 3. Members elected from member societies of the IUMS.
- In addition, the ICSP has a number of subcommittees which deal with matters relating to the nomenclature and taxonomy of specific groups of prokaryotes.

Statutes and activities of ICSP The subcommittees deal with the taxonomy of different groups of bacteria and archaea

ICSP The role of ICSP

The functions of the ICSP include the following:

- To hold meetings as part of the sessions of the International Congresses and to sponsor a session on taxonomy at the Congresses.
- ii. To approve the changes recommended by the Judicial Commission.
- iii. To receive and approve the Opinions issued by the Judicial Commission.
- iv. To set up special Subcommittees on Taxonomy to study and make recommendations on the classification and nomenclature of bacterial taxa.
- v. To publish the International Code of Nomenclature of Prokaryotes, certain official lists of bacterial names, Statutes of the ICSP, and the IJSEM.

Statutes and activities of ICSP

ICSP has 28 subcommittees which deal with the taxonomy of different groups of bacteria and archaea

- The current nomenclature of Bacteria and Archaea is officially regulated by the International Committee on Systematics of Prokaryotes (ICSP).
- There are 28 subcommittees dealing with the taxonomy of different groups of bacteria and archaea.
- ICSP (International Committee on Systematic Prokaryotes) determines the rules by which prokaryotes are named, and whose
- 2. Judicial Commission issues Opinions concerning taxonomic matters, revisions to the Bacteriological Code, etc.

ICSP Organization and functions of taxonomic subcommittees

- Members of a Subcommittee.
- The Chairman of the ICSB (now ICSP), with the other members of the Executive Board, will select the members of the new Subcommittee on Taxonomy from names submitted and other names.
- New members may be elected to a Subcommittee at any time.
- Each Subcommittee on Taxonomy shall meet at least twice at each Plenary Meeting of the ICSB.
- Subcommittees may make recommendations regarding taxonomic procedures, changes in nomenclature, recognition of types of various taxa, or classification.

International Union of Microbiological Societies, 1992

ICSP List of Some ICSP Taxonomic subcommittees

- ICSP-Subcommittee on the taxonomy of *Rhizobium* and Agrobacterium;
- ICSP-Subcommittee on the taxonomy of *Bacillus* and related organisms;
- ICSP-Subcommittee on the taxonomy of *Burkholderia*, *Ralstonia* and related organisms;
- ICSP-Subcommittee on the taxonomy of *Pseudomonas*, *Xanthomonas* and related organisms;
- ICSP-Subcommittee on the taxonomy of Family Enterobacteriaceae;
- ICSP-Subcommittee on the taxonomy of Family Streptomycetaceae
- ICSP-Subcommittee on the taxonomy of Class *Mollicutes*

Trüper and Tindall,2010. Available in website maintained by the Society for General Microbiology on behalf of the ICSP.

ICSP Functions of ICSP Taxonomic subcommittees

- 1. To encourage and to undertake research on the relationships of the organisms in the taxa under study...
- 2. To use any or all of the techniques of the several branches of science in the recognition of characters useful in distinguishing the bacteria under study...
- 3. To make recommendations in relation to the classification of the taxon under study...
- 4. To make recommendations in relation to the nomenclature of the organisms in the taxon under study...
- 5. To offer advice upon, and to request the Judicial Commission to adjudicate between, conflicting proposals for type species of genera and neotype strains of species and subspecies.

ICSP Functions of ICSP Taxonomic subcommittees

- 6. To study the International Code of Nomenclature of Bacteria (now ICSP) and make recommendations to the Judicial Commission regarding emendations.
- 7. To recommend to the ICSB, through the Judicial Commission, the official designation of subdivisions of species and subspecies below the category of subspecies, e.g., phagovars of *Staphylococcus aureus*.
- 8. To recommend to the ICSB through the Judicial Commission minimal standards for the description of new taxa for the purpose of establishing validity of publication.

The Judicial Commission Organization and Functions

- The Judicial Commission is a subcommittee elected by the International Committee on Systematics of Prokaryotes, ICSP (formerly the ICSB) to regulate and advise on nomenclatural matters on its behalf.
- The Judicial Commission consists of:
- 1. Seventeen members,
- 2. Twelve elected by the members of the International Committee on Systematics of Prokaryotes, the Chairman of the ICSP, and the three Secretaries.
- The Editor of the IJSEM (formerly IJSB) is, ex officio, a member of the Judicial Commission.

The Judicial Commission Revision of old code and ICSP names

- Administration and interpretation of the Code is through the Judicial Commission of the ICSP.
- Within the ICSP:
- 1. The Judicial Commission is responsible for ruling on any problems which arise in the nomenclature of prokaryotes, and
- 2. The editorial board of the Bacteriological Code is responsible for overseeing and publishing changes to the published version of the Code.
- The Judicial Commission of the ICSP is a subcommittee of the ICSP charged with the responsibility of dealing with nomenclatural matters.

The Judicial Commission Revision of old code and ICSP names

- Therefore, ICSP (including the Judicial Commission and the Lists Editor) is responsible for the working of the current Bacteriological Code and its system of registering/indexing names.
- In order to update the Code and to adjust it to modern requirements, the Judicial Commission proposed a number of changes and amendments.
- Among these changes, the Judicial Commission decided to replace the term Bacteria by the term Prokaryotes.

The Judicial Commission Revision of old code and ICSP names

- According to the proposals of the Judicial Commission (August 1999, Sydney, Australia), the words
 "Bacteriological Code should be changed to "Prokaryotic Code (1990 Revision).
- As a logical consequence, the complete text of the Code has to be revised accordingly:
- 1. The name of the International Code of Nomenclature of Bacteria is changed to International Code of Nomenclature of Prokaryotes, and
- 2. The name of the International Committee on Systematic Bacteriology (ICSB) is changed to International Committee on Systematics of Prokaryotes (ICSP).

The Judicial Commission Other functions

- (i) To considers all proposals for emendation of the International Code of Nomenclature of Prokaryotes.
- (ii) To consider all Requests for Opinion.
- (iii) To make recommendations to the International Committee on Systematics of Prokaryotes relative to the official designation of subdivisions of species and subspecies below the category of subspecies.
- (iv) To review lists prepared by the Editorial Board for the International Code of Nomenclature of Prokaryotes (*nomina conservanda, nomina rejicienda*...).
- (v) To request Subcommittees on Taxonomy to suggest minimal standards for the description of new taxa.
- (vi) To consider recommendations from Subcommittees on Taxonomy for the acceptance of a list of names as valid and applicable to recognizable taxa.

The Judicial Commission functions Requests for Opinions

Rule 4

In the absence of a relevant Rule or where the consequences of a Rule are uncertain, a summary in which all pertinent facts are outlined should be submitted to the Judicial Commission for consideration for preparation of a Request for an Opinion.

Opinion: A decision of the Judicial Commission of the International Committee on Prokaryote Systematics (ICPS).

The function of Judicial Commission Requests for Opinions

 In those cases where strict adherence to the Rules of nomenclature would produce confusion or would not result in nomenclatural stability, exceptions to the Rules may be requested of the Judicial Commission of the International Committee on Systematic of Prokaryotes (ICSP).

The function of Judicial Commission Requests for Opinions and Judicial Opinion

- Request for an opinion should be published in the IJSB (now IJSEM).
- Request for an opinion must be accompanied by a fully documented statement of the relevant facts [Appendix 8].
- A request is considered first by the Judicial Commission and if approved by 10 or more members is then submitted to the ICSP (International Committee on Systematics of Prokaryotes) for final approval.
- Opinions and actions of the Judicial Commission on requests for opinions, are provided in the file Request for Opinion and Judicial Opinions in the IJSEM.

Judicial Opinion is an official decision taken by the Judicial Commission in favour of a proposal (published in the *International Journal of Systematic Bacteriology* or in the *International Journal of Systematic and Evolutionary Microbiology*) for nomenclatural change or for interpretation of the Principles, Rules, and Recommendations of the *Bacteriological Code* (1990 Revision)

The function of Judicial Commission Requests for Opinions

- Opinions and actions of the Judicial Commission on Requests for Opinions, not included in the Bacteriological Code (1990 Revision), are provided below under three lists.
- 1. Opinions 64 to 87;
- 2. Some actions denied or not considered or withdrawn;
- 3. Opinions pending (awaiting conclusion or confirmation).

Request for Opinions Example: Opinion 87

Request for considering *Arthrobacter ilicis* as plant-pathogenic species

- Opinion requested by Young *et al.*,2004.
- Reconsideration of *Arthrobacter ilicis* (Mandel *et al.*,1961)
 Collins *et al.*,1982 as a plant-pathogenic species.
- Judicial Commission action:
- Mandel *et al.*,1961 considered to be pathogenic on American holly (*Ilex opaca*), this has proven not to be the case.
- Further work has shown that the species Arthrobacter ilicis represented by the type strain DSM 20138= ATCC 14264= NCPP B1228, is not pathogenic for American holly and should not be listed as a plant pathogenic species.
- At present Arthrobacter ilicis is excluded from ISPP list of plant pathogenic bacteria. Curtobacterium flaccumfaciens pv. ilicis has been proposed for the pathogen of American holly.

Request for Opinions

Some actions denied or not considered or withdrawn Type species of *Agrobacterium*

- Opinion requested by Sawada *et al.*,1993.
- Sawada *et al.*,1993 proposed that the name *Agrobacterium tumefaciens* should be rejected because it is a later synonym of *Agrobacterium radiobacter*.
- Bouzar reviewed the situation, noting that all prior commission actions had the effect of conserving *Agrobacterium tumefaciens* as the type species of the genus *Agrobacterium*.
- Judicial Commission action:
- The commission accepted Bouzar's position that *Agrobacterium tumefaciens* is still the type species; no further action is needed.

Note: *A. tumefaciens* and *R. radiobacter* both were used in Bull *et al.*,2010 comprehensive list as well as DSMZ validly published bacterial names (2014) list.

Request for Opinions

Some actions denied or not considered or withdrawn Proposal of Enterobacteraceae as a substitue for Enterobacteriaceae

- Opinions upon request:
- Lapage (Approved Lists 1980) proposed that the type genus of the family *Enterobacteriaceae* be changed from *Escherichia* to *Enterobacter* and that the family name be changed to *Enterobacteraceae*.
- Judicial Commission action:
- The Judicial Commission has reviewed this question and concluded that the family name *Enterobacteriaceae* retains its standing (as does *Escherichia* as the type genus) and should have been incorporated in the body of the Approved Lists.

Request for Opinions

Some actions denied or not considered or withdrawn Proposal to reclassify *Brenneria quercina* and *Dickeya dadantii*

- Based on 16S rRNA gene sequencing and multilocus sequence analysis (MLSA) and some chemotaxonomic methods:
- Proposal to reclassify *Brenneria quercina* (drippy nut of oak) into a new genus, *Lonsdalea* gen. nov., as *Lonsdalea quercina* comb. nov., descriptions of:
- 1. Lonsdalea quercina subsp. quercina comb. nov.,
- 2. Lonsdalea quercina subsp. iberica subsp. nov., and
- 3. Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria.
- Also reclassification of *Dickeya dadantii* (soft rot diseases on many crops) as *Dickeya dadantii* subsp. *dieffenbachiae* comb. nov., and emendation of the description of *Dickeya dadantii*.

Lonsdalea named for David Lonsdale in honour of his contributions to British forest pathology.

Request for Opinions Opinions pending References

- YOUNG (J.M.), PENNYCOOK (S.R.) and WATSON (D.R.W.): Proposal that *Agrobacterium radiobacter* has priority over *Agrobacterium tumefaciens*. Request for an Opinion. *Int. J. Syst. Evol. Microbiol.*, 2006, **56**, 491-493. Original article in IJSEM Online.
- AN (S.Y.) and YOKOTA (A.): The status of the species *Leifsonia rubra* Reddy *et al.* 2003. Request for an Opinion. *Int. J. Syst. Evol. Microbiol.*, 2007, **57**, 1163. Original article in IJSEM Online.
- LAMBERT (D.H.), LORIA (R.), LABEDA (D.P.) and SADDLER (G.S.): Recommendation for the conservation of the name *Streptomyces scabies*. Request for an opinion. *Int. J. Syst. Evol. Microbiol.*, 2007, **57**, 2447-2448. Original article in IJSEM Online.

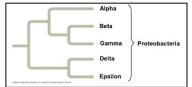
The Code Statutes *Ad hoc* committees

- *Ad hoc* is a latin phrase meaning for this particular purpose, specially.
- In science *ad hoc* means the addition of extraneous (external) hypotheses to a theory to save it from being falsified (to represent falsely).
- Ad hoc committees, and commissions are created at the national or international level for a specific task.
- Usually these committees are used on a temporary basis, such as temporary oversight of an issue, or review of the standing rules or the constitution of that organization.
- An *ad hoc* organization may have, in some cases, a long-term or indefinite duration of existence. e.g. The Code.
- International Association of Microbiological Societies (IUMS), Ad hoc Committee of the Judicial Commission of ICSP (Int. Committee of Systematic of Proaryotes).

IUMS \longrightarrow ICSP \longrightarrow Judicial Commission \longrightarrow *ad hoc* Committees

Ad Hoc Committee of the Code Initial functions

- At the meeting of the Judicial Commission of the ICSB held in Jerusalem on the 29th March, 1973 an Ad Hoc Committee was appointed (Minute 22):
- 1. To organize a review of the currently valid names of bacteria with the object of retaining only names for those taxa which were adequately described and, if cultivable, for which there was a Type, Neotype or Reference strain available;
- 2. To compile these names under the title of Approved Lists of Bacterial Names, and
- 3. To publish the lists in the International Journal of Systematic Bacteriology, to become effective on January 1, 1980.
- The Ad Hoc Committee has repeatedly stressed that its task was nomenclatural and not taxonomic.

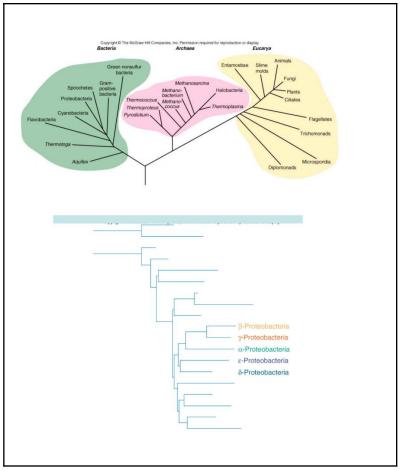

Ad Hoc Committee of the Code Initial functions

- The ad hoc Committee in 1978 was assigned wide powers to complete the work on the Lists and arrange publication.
- The ad hoc Committee asked:
- 1. All Subcommittees on Taxonomy of the ICSB for advice on the retention of taxa for which the Subcommittees were responsible, and
- 2. That specialists be approached for advice on other taxa;
- 3. Only a small list of taxa remained to be considered by the Ad Hoc Committee itself.

Note that Arthur Kelman as Chairman of the ISPP, convened an ad hoc meeting of interested scientists at Berkeley, in early 1978, and at this meeting, chaired by Milt Schroth, the Committee on Taxonomy of Plant Pathogenic Bacteria of the ISPP was founded.

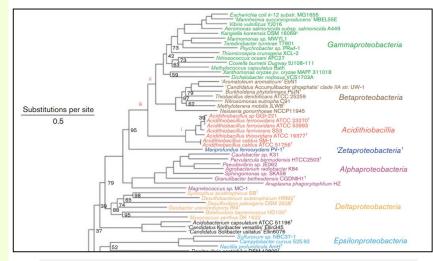
The *ad hoc* Functions

- 1. To make recommendations to the ICSP relative to the official designation of subdivisions of species and subspecies below the category of subspecies, and
- To request revision of these recommendations when necessary, the Judicial Commission shall invite proposals from the relevant Subcommittee on Taxonomy, or in the absence of such a Subcommittee from an *ad hoc* committee of experts appointed to submit such proposals (including species definition).



Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria

- This ad hoc committee was formed following the workshop on reconciliation (the process of making consistent or compatible) of approaches to bacterial systematics (Wayne *et al.*,1987) because it was realized that the "purple bacteria and their relatives" are a major phylum of Gram-negative bacteria.
- They are classified into five classes, alpha (a), beta(b), gamma (g), delta (d) and epsilon (e), distinguished by small differences in their rRNA sequences.
- The gammaproteobacteria are the largest class in terms of species with validly published names.


Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria

- The Proteobacteria:
- largest cultured group of bacteria - 380 genera & at least 1500 species!
- 5 major groups ("classes"):
- 1. Alphaproteobacteria
- 2. Betaproteobacteria
- 3. Gammaproteobacteria
- 4. Deltaproteobacteria
- 5. Epsilonproteobacteria.

Domain: Bacteria Phylum: Proteobacteria

A new class (a sixth class) within the phylum Proteobacteria, Acidithiobacillia classis nov., was proposed by Williams and Kelly, 2013 and replaced by the 'Zetaproteobacteria', a sixth class was proposed earlier by Emerson et al.,2007 and McAllister et al.,2011).

Zetaproteobacteria was excluded by Williams and Kelly,2013.

Williams and Kelly,2013

		Proteobacterial class and	Family *	Disease (symptoms)
	Domain: Bacteria	species		
	Phylum:	"Alphaproteobacteria"	P1 1 11	
	Proteobacteria	Agrobacterium rhizogenes	Rhizobiaceae	Hairy root
		Agrobacterium tumefaciens	Rhizobiaceae	Crown gall
		"Candidatus Liberibacter	in cluster of	Greening disease on citrus (a phloem-restricted
		asiaticus"	Rhizobiaceae,	disease)
_		asiancas	Bartonellaceae, etc.	
			2 a. maine a a constant	
	•	"Betaproteobacteria"		
		Acidovorax anthurii	Comamonadaceae	Leaf-spot on Anthurium
	Some selected	Burkholderia cepacia	"Burkholderiaceae"	Soft rot (sour skin on onion)
		Burkholderia glumae	"Burkholderiaceae"	Sheath necrosis on rice
	plant diseases	Ralstonia solanacearum	"Ralstoniaceae"	Moko disease on banana (vascular wilt)
	-	Xylophilus ampelinus	Comamonadaceae	Necrosis and canker on grapevine
	caused by			
	-	"Gammaproteobacteria"	P 1	Watermark disease on willow
	alpha, beta and	Brenneria (Erwinia) salicis	Enterobacteriaceae Enterobacteriaceae	Bark canker on Persian walnut (Juglans regia)
		Brenneria nigrifluens Erwinia amylovora	Enterobacteriaceae	Fire blight on pome fruit (vascular wilt)
	gamma	Erwinia stewartii	Enterobacteriaceae	Stewart's wilt on corn (vascular wilt)
	subdivisions of	Pectobacterium (Erwinia)	Enterobacteriaceae	Soft rot
	SUDUIVISIONS OF	carotovorum		
	the Phylum	Pseudomonas agarici	Pseudomonadaceae	Spots on mushrooms
	the Filylum	Pseudomonas marginalis	Pseudomonadaceae	Soft rot (pink eye) on potato
	Proteobacteria.	Pseudomonas savastanoi	Pseudomonadaceae	Galls on olive trees
	i i otcobacteriai	Pseudomonas syringae	Pseudomonadaceae	Wildfire on tobacco, haloblight on beans,
				spots on tomato and pepper (blights and spots)
	The gammaprot	Pseudomonas syringae	Pseudomonadaceae	Canker on stone fruit
		Xanthomonas campestris	"Xanthomonadaceae"	Black rot on crucifers (vascular wilt)
	eobacteria are	Xanthomonas citri	"Xanthomonadaceae"	Canker on citrus
		Xanthomonas oryzae	"Xanthomonadaceae"	Blight on rice

Xanthomonas populi

Xylella fastidiosa

Xanthomonas translucens

Xanthomonas vesicatoria

the largest class in terms of species.

^a According to *Bergey's Manual of Systematic Bacteriology* (Garrity and Holt, 2001). See also Fig. 1. Quotation marks are used for names which have not yet been validated (as of mid 2002).

"Xanthomonadaceae"

"Xanthomonadaceae"

"Xanthomonadaceae" "Xanthomonadaceae" Canker on poplar trees

Spots on tomato and pepper

Pierce's disease (e.g., on grapevine)

Blight on cereals

The function of Ad Hoc

Tips and suggestions for the practising rhizobial taxonomist

- Report of the *ad hoc* committee for the re-evaluation of the species definition in bacteriology:
- 1. How many strains should be used to describe a new rhizobial species?
- Answer: New species descriptions based on a single isolate are strongly discouraged!
- 2. How many and which molecular markers should be used?
- Answer: A good compromise would be to generate fulllength 16S rDNA sequences for a few carefully selected strains, along with the partial sequencing of two protein-coding core loci (e.g. *rec*A and *rpo*B) and at least one sym (symbiotic im rhizobium) locus.

The function of Ad Hoc

Tips and suggestions for the practising rhizobial taxonomist

3. What phenotypic tests should be performed?

- Answer: Of particular interest are phenotypes and chemotaxonomic markers that are relevant or expressed in the niches potentially occupied by the target organisms (i.e. ecological adaptive traits). When coupled with clear genetic determinants, such ecological traits are very informative and of extraordinary taxonomic value.
- 4. What about DNA-DNA hybridization or reassociation experiments?
- We favour the use a thorough multilocus sequence analysis (MLST/MLSA) combined with key phenotypic analyses for species demarcation. This evidence should be ideally further extended with 16S rDNA sequencing of the type strain and two other strains, combined with DNA-DNA hybridization data for these reference strains and the relevant phylogenetic relatives.

ad hoc References

- Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Truper. 1987. Report of the *ad hoc* committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol 37: 463-464.
- Murray, R. G. E., D. J. Brenner, R. R. Colwell, P. DE VOS, M. Goodfellow, P. A. D. Grimont, N. Pfennig, E. Stackebrandt, and G. A. Zavarzin. 1990. Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. 1990. Int. J. Syst. Bacteriol. 40: 213-215
- Report of the ad hoc committee on the reconciliation of approaches to bacterial systematic.1998. Int. J. Syst. Bacteriol. 37:463-464.
- Report of the *ad hoc* committee for the re-evaluation of the species definition in bacteriology.2002. Int J Syst Evol Microbiol. 52(Pt 3):1043-7.

The Code Principles, Rules and Recommendations

- The Code consists of:
- 1. Principles
- 2. Rules
- 3. Recommendations (Lapage *et al.*, 1992).
- The Principles form the basis of the Code, and the Rules and Recommendations are derived from them.

The Code

Principles, Rules and Recommendations

- The Principles are general concepts that form the basis and overall guidance for the Code.
- The Rules are derived from these Principles and provide the detailed methods for practical application of the Principles in the naming of bacteria.
- The Rules must be followed when proposing names for bacteria.
- The Recommendations provide additional guidance, but in contrast to the Rules are not obligatory.

The Code Principles, Rules and Recommendations Some Principles

Principle 1

- The essential points in nomenclature are as follows:
- Aim at stability of names,
- Avoid or reject the use of names which may cause error or confusion,
- Avoid the useless creation of names.

Names that have been changed to accord with correct Latin are listed in Bull *et al.*,2010 comprehensive bacterial names as 'corrig.' Since these corrections were made, the Code has been amended to take account of the need for stability of names.

The Code Principles, Rules and Recommendations Some Principles

Principle 2

According to Principle 2, the nomenclature of Prokaryotes is not independent of botanical and zoological nomenclature.

When naming new taxa in the rank of genus or higher, due consideration is to be given to avoiding names which are regulated by the Zoological Code and the International Code of Botanical Nomenclature.

The Code Principles, Rules and Recommendations

Principle 3

The scientific names of all taxa are Latin or latinized words treated as Latin regardless of their origin.

They are usually taken from Latin or Greek.

Nomenclature: "Bacterial names may originate from any language, but they must be given a Latin suffix." (i.e., they must be Latinized).

The Code Principles, Rules and Recommendations Some Rules

The Rules:

- The Rules only apply:
- To ranks at the level of subspecies and above, but not to lower taxonomic ranks.

The Code Principles, Rules and Recommendations Some Rules

 Rules for nomenclature ensure that changes to names of taxa follow a logical progression that maintains the integrity of the previous nomenclature while replacing it with new proposals based on additional scientific injury into relationships among organisms.

The Code Principles, Rules and Recommendations Some Rules

Section 1. General

Rule 1a

This revision supersedes all previous editions of the International Code of Nomenclature of Bacteria. It shall be cited as Bacteriological Code (1990 Revision) and will apply from the date of publication (1992).

Rule 1b

Alterations to this Code can only be made by the ICSB at one of its plenary sessions. Proposals for modifications should be made to the Editorial Secretary in sufficient time to allow publication in the IJSB before the next International Congress of Bacteriology. For this and other Provisions, see the Statutes of the ICSB, pp. 137 158.

Rule 2

The Rules of this Code are retroactive (influencing), except where exceptions are specified.

The Code Principles, Rules and Recommendations Some Recommendations

- Section 1. General
- Rule 3
- Names contrary to a Rule can not be maintained, except that the International Committee on Systematic Bacteriology (now ICSP), on the recommendation of the Judicial Commission, may make exceptions to the Rules (see Rule 23a and the Statutes of the ICSB).

The Code

Principles, Rules and Recommendations Some Recommendations

- The Recommendation provide additional guidance, but in contrast to the Rules are not obligatory.
- It is recommended that names be reasonably short and easy to pronounce (Recommendation 6).
- Names may be chosen to recognize individual bacteriologists or pathologists, but names honoring individuals quite unconnected with bacteriology are discouraged (Recommendations 6, 10a, 12c).
- For example, a novel species of Agrobacterium from Ficus benjamina was proposed and named Agrobacterium larrymoorei (of Larry Moore) to honor the "renowned plant pathologist who spent his career studying the genus Agrobacterium" (Bouzar and Jones, 2001).

The Code

Principles, Rules and Recommendations Some Recommendations

- Longest and shortest prokaryotic names:
- Recommendattion 6 (1) of the *Bacteriological Code* (1990 Revision) states the following:
- Avoid names or epithets that are very long or difficult to pronounce.
- In spite of Recommendation 6 there are some long genus names and specific epithets.

The Code Some Recommendations Longest prokaryotic names

Longest prokaryotic names

Names

Forty two letters Thermoanaerobacterium thermosaccharolyticum

Forty letters Thermoanaerobacterium polysaccharolyticum

Thirty nine letters

Methanothermococcus thermolithotrophicus Thermoanaerobacter thermohydrosulfuricus Thermoanaerobacterium thermosulfurigenes

Thirty eight letters

Hydrogenoanaerobacterium saccharovorans Streptoverticillium griseoverticillatum Thioalkalivibrio thiocyanodenitrificans

Thirty seven letters

Aureobacterium arabinogalactanolyticum Clostridium saccharoperbutylacetonicum Methanothermobacter thermautotrophicus Microbacterium arabinogalactanolvticum Streptoverticillium luteoverticillatum Streptoverticillium olivoverticillatum Streptoverticillium rectiverticillatum Streptoverticillium roseoverticillatum Thermodesulfobacterium hydrogeniphilum

Genus names

Twenty four letters Hydrogenoanaerobacterium

Twenty three letters Allocatelliglobosispora

Twenty two letters

Caldicellulosiruptor Clostridiisalibacter Desulfonatronovibrio Methanomethylovorans Phascolarctobacterium Pseudoflavonifractor Pseudosphingobacterium Selenihalanaerobacter Sulfurihydrogenibium Thermoanaerobacterium Thermodesulfobacterium Thermodesulfobacterium Thermoflavimicrobium Thermoflavimicrobium Thermosediminibacter Thermoterrabacterium

Specific epithets

Twenty six letters saccharoperbutylacetonicum

Twenty four letters nitratireducenticrescens phaeogriseichromatogenes

Twenty three letters

arabinogalactanolyticum phaeoluteichromatogenes purpurogeneiscleroticus

Twenty two letters

psychrosaccharolyticus tetrahydrofuranoxydans thiocyanodenitrificans

Twenty one letters

actinomycetemcomitans alkalidiazotrophicus hydrocarbonoclasticus thermocarboxydovorans thermohydrosulfuricum thermohydrosulfuricus thermosaccharolyticum

Euzeby,2017

The Code Some Recommendations Shortest prokaryotic names

Shortest prokaryotic names				
Names	Genus names	Specific epithets		
Ten letters	Five letters	Three letters		
Dyella soli	Asaia	uli		
Vibrio xuii	Bosea	uda		
Yania flava	Dorea			
et tu	Iamia	Four letters		
Eleven letters	Leeia	agri		
Afipia felis Blautia luti	Orbus	alba ala i		
Deleva aesta	Yania	alni alvi		
Deleya aesta Devosia limi	Six letters	apis		
Devosia infi Devosia soli	Afipia	arvi		
Dickeya zeae	Agreia	boum		
Erwinia alni	Asanoa	cati		
Frankia alni	Basfia	ceti		
Hafnia alvei	Deleva	cibi		
Haliea rubra	Derxia	coli		
Kaistia soli	Dongia	cyri		
Leeia oryzae	Dyella	doii		
Nevskia soli	Faenia	dura		
Rothia aeria	Fangia	dyei		
Runella zeae	Gelria	equi		
Stappia alba	Hafnia	etli		
Vibrio casei	Haliea	fimi		
Vibrio logei	Hellea	gari		
Vibrio rarus	Hippea	humi		
Vibrio ruber	Hongia	lari		
	Jejuia	lata		
	Kordia	limi		
	Labrys	lini		
	Nisaea	loti		
	Olleya	luti		
	Orenia	mali		
	Pragia	mays		
	Pricia	mira		
	Rothia	nova		
	Ruania	oeni		
	Rudaea	olei		
	Salana	oris		
	Shimia	ovis		
	Stella	peli		
	Vibrio	pini		
	Yangia	pisi		
	Zhouia	poae		
		rapi		
		rosa		
		rubi		
		sedi		
		sera soli		
		soii suis		
		tofi		
		ulmi		
		vaga		
		vaga vini		
		xuii		
		xyli		
		yeei		
1		,		

zeae

Euzeby,2017

Rejected names nomen rejiciendum: nom.rej., or nom. rejic.

- Only the Judicial Commission can reject names (*nomina rejicienda*). [Rules 23a Note 4 (i) and 56a,b].
- The Judicial Commission may place on the list of rejected names a name previously published in an Approved List [Rule 24c].
- A name may be placed on this list (list of rejected names) for various reasons, including the following [Rule 56a]:
- 1. An ambiguous name (*nomen ambiguum*), i.e., a name which has been used with different meanings and thus has become a source of error.
- 2. A doubtful name (*nomen dubium*), i.e., a name whose application is uncertain.

Rejected names nomen rejiciendum: nom.rej., or nom. rejic.

- 3. A name causing confusion (*nomen confusum*), i.e., a name based upon a mixed culture.
- 4. A perplexing name (*nomen perplexum*), i.e. a name whose application is known but which causes uncertainty in bacteriology (see Rule 57c).
- 5. A perilous(dangerous) name (*nomen periculosum*), i.e., a name whose application is likely to lead to accidents endangering health or life or both or of serious economic consequences.
- Example: Yersinia pseudotuberculosis subsp. pestis is placed on the list of nomina rejicienda because of practical concerns about human welfare.

Euzeby,2010

Rejected names Assignment of the genus *Sphingomonas* as *Sphingomonas suberifaciens*

- Selected names must not have been rejected previously for specific reasons (Rule 56a; see Euzéby,2005).
- For example, the genus name *Rhizomonas* is listed as a "rejected name of genera and subgenera of bacteria" (*nomina generum et subgenerum bacteriorum rejicienda*) because this genus name had earlier been assigned to a taxon of protozoa (*Rhizomonas* Kent 1880).
- According to Rule 51b, *junior homonyms* of a taxon of bacteria, fungi, algae, protozoa, or viruses are illegitimate.
- Thus, the proposal to use *Rhizomonas* as the genus name for the pathogen causing corky root of lettuce (*Rhizomonas suberifaciens*; Van Bruggen *et al.*,1990) violated the Code.
- This bacterium has since been assigned to the genus Sphingomonas as Sphingomonas suberifaciens (Yabuuchi et al., 1999).

Homonymy is the term applied when the same name is given to two or more different taxa of the same rank based on different types. The first published name is known as the senior homonym and any later published name as a junior homonym.

Bull *et al*.,2008

Revived names nomen revictum: nom. Rev.

- A revived name is a name which was published prior to 1 January 1980 but not included in the Approved Lists of Bacterial Names and which is proposed by an author for a different or for the same taxon (in the author's opinion) [Rules 28a and 33c].
- If an author wishes to indicate the names of the original authors of a revived name, he may do so by citation of the name of the taxon, followed by the word "*ex*" and the name of the original author and the year of publication, in parentheses, followed by the abbreviation "nom. rev" (*nomen revictum*) [Rule 33c Note 2].
 Example:
- Corynebacterium iranicum (ex Scharif 1961) nom. rev., and Corynebacterium tritici (ex Hutchinson 1917) nom. rev.
- Present name is *Rathayibacter iranicus*
- Note: A rejected name can not be revived [Rule 28a].

Euzeby,2010

Conserved names

nomen conservandum : nom. Cons.

- A conserved name (*nomen conservandum*) is a name which must be used instead of all earlier synonyms and homonyms [Rules 23a Note 4, and 56b].
- Only the Judicial Commission can place names on the list of conserved names [Rules 23a Note 4 (i) and 56b Note 2].
- Example:
- Conserved family names (*Nomina familarum conservanda*):
- 1. Enterobacteriaceae Rhan 1937
- Conserved names of genera of bacteria (Nomina generum bacteriorum conservanda):
- 1. Agrobacterium Conn 1942
- 2. Pseudomonas Migula 1894
- Conserved specific epithets in names of species of bacteria (*Epitheta specifica conservanda*):
- *sporogenes* in *Clostridium sporogenes* (Metchnikoff 1908) Bergey *et al.*,1923 (Approved Lists,1980)

Homonymy is the term applied when the same name is given to two or more different taxa of the same rank based on different types. The first published name is known as the senior homonym and any later published name as a junior homonym.

Contentious names

- Some proposals are contentious (controversy, contrary) names. e.g. Xanthomonas fuscans proposed by Schaad et al.,2006 is considered to be a synonym of X. citri.
- In these cases it may be adequate to use either:

* Valid names. For more details refer to

Bull *et al.*,2010 list.

 The latest validly published combinations, such as those indicated in the ISPP lists, or to use traditional names that no longer necessarily reflect relationships accurately, e.g. *Agrobacterium* (Young, 2008).

	Proposed name		
λ	Xanthomonas citri		
*	<i>X. citris</i> subsp. <i>citri</i>		
*	<i>X. citris</i> subsp. <i>malvacearum</i>		
λ	Canthomonas fuscans		
*	<i>X. fuscans</i> subsp. <i>fuscans</i>		
*	<i>X. fuscans</i> subsp. <i>aurantifolii</i>		
λ	Xanthomonas alfalfae		
*	<i>Xanthomonas alfalfa</i> e subsp. <i>alfalfa</i> e		
*	<i>Xanthomonas alfalfa</i> e subsp. <i>citrumelonis</i>		

Name causing confusion nomen confusum

- A name based upon a mixed culture.
- Such a name should be rejected [Rule 56a].
- Example:
- Methanosarcina methanica nom. rejic. (Opinion 63).

Orthography of names The system for developing correctly constructed names

- The names of all taxa are Latin or latinized words treated as Latin regardless of their origin [Principle 3, Rule 6].
- Although standardization of orthography produces elegant (beautiful) names in a regularized form, bacteriologists are usually untrained in Latin grammar and many mistakes have been made.
- Some example of the names need correction:
- Streptomyces scabies to S. scabiei,
- *Erwinia carotovora* to *E. carotivorax*,
- *E. tracheiphila* to *E. trachiiphila*,
- Pseudomonas savastanoi to P. savastanonii or P. savastanonis,
- Rhizobium leguminosarum to R. leguminum,
- Xanthomonas axonopodis to X. axonopi

Citation style guide Author/Editor APA/MLA Format

- When the new name of a taxon is validly published under more than two authors, and when there is not definite designation of a single individual as the author of the name, the citation may be made by listing the names of all the authors or by giving the name of the first author, followed by the abbreviation "*et al.*" (*et alii*) [Chapter 4. Advisory notes. B. Quotations of authors and names (1)].
- Example:
- Afipia felis Brenner, Hollis, Moss, English, Hall, Vincent, Radosevic, Birkness, Bibb, Quinn, Swaminathan, Weaver, Reeves, O'Connor, Hayes, Tenover, Steigerwalt, Perkins, Daneshvar, Hill, Washington, Woods, Hunter, Hadfield, Ajello, Kaufmann, Wear and Wenger 1992, or
- Afipia felis Brenner et al. 1992.

Multiple authorship Comparing MLA and APA Citation Styles

 Here are some ways in which MLA (Modern Language Association) and APA (American Psychological Association) Citation styles are different:

	MLA (Modern Language Association)	APA (American Psychological Association)
Authors/editors	Spells out available names. If more than 3 list first and "et al."	Uses last name and first initial. Lists all authors
Titles	Capitalizes every important word	Capitalizes first word
Publisher	Shortens name	Uses full name
Place of publication	Only lists city	Lists state abbreviations when city is lesser known
Pages	Uses + for pages after the first one	Lists first page and additional pages
Dates	Placed at end of citation	Follows authors name
Indentions	First line is flush with left margin, second and subsequent lines are indented	First line of an entry is indented, second and subsequent lines are flush with the left margin
Parenthetical Citation in Text	Uses author name and page	Uses author name, date of publication, and page number

http://students.msbcollege.edu/library/guides/citecompare.html

Multiple authorship Comparing MLA and APA Citation Styles

 Here are some ways in which MLA (Modern Language Association) and APA (American Psychological Association) Citation styles are different:

	MLA	APA			
Books	Gibaldi, Joseph. <u>MLA Handbook for Writers of Research</u> <u>Papers</u> . 6th ed. New York: MLA, 2003.	Gibaldi, J. (2003) <i>MLA handbook for writers of research papers</i> . 6th ed. New York: MLA.			
Journal articles	Donaldson, Scott. "Protecting the Troops from Hemingway: An Episode in Censorship." The Hemingway Review 15 (1995): 87-93.	Donaldson, S. (1995). Protecting the troops from hemingway: an episode in censorship. The Hemingway Review, 15, 87-93.			
Article from databases (library subscription service)	Anderson, John. "Superego." Journal of Psychology October 2003: 41. Academic Search Elite. EBSCOhost. MSB Brooklyn Center Campus Library, Brooklyn Center, MN. 10 November 2003 <http: search.epnet.com="">.</http:>	Anderson, J. (2003, October) Superego. Journal of Psychology, 41. Retrieved November 10, 2003, from EBSCOhost.			
Quotes and in-text citations	In the paper you must cite the source in parentheses with the author's last name and page number of the source used at the end of the sentence. Examples:	In the paper you must cite the author and date in the appropriate place within the text or at end of the sentence. Examples:			
	 While learning to do research for your academic classes, you will gain skills that will prepare you to do research in your career within business, government, or other professional areas (Gibaldi 5). Gibaldi describesand he also writes "this handbook is a guide for the preparation of research papers" (5). 	 Anderson (1984) urges roommates to settle differences In her list of rules for roommates (Anderson, 1984) She stated, "The list of rules in this manner" (Anderson, 1984, p. 198), but she still was upset. 			
Citation List	This page must be titled Works Cited.	This page must be titled <u>Reference(s)</u> .			

http://students.msbcollege.edu/library/guides/citecompare.html

Multiple authorship Comparing MLA and APA Citation Styles

APA Citation Style:

- Donaldson, S. (1995). Protecting the troops from hemingway: an episode in censorship. The Hemingway Review, 15, 87-93.
- MLA Citation Style:
- Donaldson, Scott. "Protecting the Troops from Hemingway: An Episode in Censorship." The Hemingway Review 15 (1995): 87-93.

Multiple authorship Comparing MLA and APA Citation Styles MLA style

- In MLA style, use "and" before the final author's name.
- Reverse the first and last name for the first author only, and separate each author's name with a comma.
- If two authors have the same last name, you should list each full name separately.
- When there are four or more authors, use only first author's name followed by "et al."

MLA Example

- *Psychology* by Douglas A. Bernstein, Louis Penner, Alison Clarke-Stewart, Edward Roy.
- Cited as an example: Bernstein, Douglas, et al. *Psychology*. 8th ed. Boston: Houghton, 2008. Print.

Multiple authorship Comparing MLA and APA Citation Styles APA style

- APA (American Psychological Association) style is most commonly used to cite sources within the social sciences.
- In APA style, reverse the first initials and last name of each author, and separate each author's name with a comma.
- Use an ampersand before the last author's name.
- When there are more than seven authors, list the first six, followed by an ellipsis, and then the last author.
- Otherwise, list every author by name.
- APA Example
- *Psychology* by Douglas A. Bernstein, Louis Penner, Alison Clarke-Stewart, Edward Roy.
- Cited as an example: Bernstein, D., Penner, L., Clarke-Stewart, A., & Roy, E. (2008). *Psychology* (8th ed.). Boston, MA: Houghton Mifflin.

Multiple authorship Three, Four or Five authors APA style

In-text:

- According to Hall, Timothy, and Duval (2007) ... OR Research indicates ... (Hall, Timothy, & Duval, 2007)
- Cite all authors the first time in-text. In subsequent citations, include only the surname of the first author followed by et al. and year of publication, e.g. (Hall et al., 2007)
- Reference List:
- Hall, C. M., Timothy, D. J., & Duval, D. T. (2007). Safety and security in tourism: Relationships, management and marketing. Mumbai, India: Jaico Publishing House.
- Separate the final name from the rest with a comma and an ampersand.

Multiple authorship Six or seven authors APA style

In-text:

- According to Roeder et al. (1967) ...
- In-text cite only the surname of the first author followed by et al.
- Reference List:
- Roeder, K., Howdeshell, J., Fulton, L., Lochhead, M., Craig, K., & Peterson, R. (1967). *Nerve cells and insect behaviour*. Cambridge, MA: Harvard University Press.
- Include all names in the Reference List.

Multiple authorship Eight or more authors APA style

In-text:

- Yoon et al. (2001) argue OR
 Research indicates ... (Yoon et al., 2001)
- Reference List:
- When authors number eight or more, include the first six authors' names, then insert three dots and add the last author's name:
- Yoon, P. W., Chen, B., Faucett, A., Clyne, M., Gwinn, M., Lubin, I. M., ... Muin, J. (2001). Public health impact of genetic tests at the end of the 20th century. *Genetics in Medicine*, *3*, 405-410.

Multiple authorship More than 10 authors Sample International Journal of Systematic and Evolutionary Microbiology references

- 1. For references with ten or fewer authors, give the names of all authors in the form "Surname, Initials".
- 2. For references with more than ten authors, list the first nine followed by "& other authors". e.g.
- In-text:
- Williamson *et al.*,1998 or Hackett *et al.*,1996
- Reference List:
- Williamson, D. L., Whitcomb, R. F., Tully, J. G. & 10 other authors (1998). Revised group classification of the genus *Spiroplasma*. *Int J Syst Bacteriol* 48, 1-12.
- Hackett, K. J., Whitcomb, R. F., Clark, T. B. & 12 other authors (1996). Spiroplasma leptinotarsae sp. nov., a mollicute uniquely adapted to its host, the Colorado potato beetle, Leptinotarsa decemlineata (Coloeoptera: Chrysomelidae). Int J Syst Bacteriol 46, 906-911.

Multiple authorship

More than 10 authors Sample International Journal of Systematic and Evolutionary Microbiology references

- The total number of the authors is less than 10:
- Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, et al. (2015) Correction: A Higher Level Classification of All Living Organisms. PLoS ONE 10 (6): e0130114. doi:10.1371/journal. pone.0130114

Two or more works by the same author in the same year

- If you are using more than one reference by the same author (or the same group of authors listed in the same order) published in the same year, organize them in the reference list alphabetically by the title of the article or chapter. Then assign letter suffixes to the year. Refer to these sources in your essay as they appear in your reference list:
- Berndt, T. J. (1981a). Age changes and changes over time in prosocial intentions and behavior between friends. *Developmental Psychology*, *17*, 408-416.
- Berndt, T. J. (1981b). Effects of friendship on prosocial intentions and behavior. *Child Development*, *52*, 636-643.

Harvard citation style

In-text:

- in response to institutional priorities and community or user needs and interests" (Johnson 2009, p. 1). According to Johnson (2009, p. 1),
- Reference List:
- Carlson, A & Pope, BM 2009, 'The "Big Deal": A survey of how libraries are responding and what the alternatives are', *The Serials Librarian*, vol. 57, no. 4, pp. 380-398. Available from: Taylor & Francis Online. [28 September 2015].
- Johnson, P 2009, Fundamentals of collection development and management, 2nd edn, ALA Editions, Chicago.
- University of Western Australia Library 2015, Collection management principles and policies. Available from:

http://www.library.uwa.edu.au/information-

resources/collections/management. [14 October 2015].

A digital object identifier (DOI) The DOI system was introduced it in 2000

- A DOI, or Digital Object Identifier, is a string of numbers, letters and symbols used to permanently identify an article or document and link to it on the web.
- The publisher assigns a DOI when your article is published and made available electronically.
- All DOI numbers begin with a 10 and contain a prefix and a suffix separated by a slash.
- 1. The prefix is a unique number of four or more digits assigned to organizations;
- 2. The suffix is assigned by the publisher and was designed to be flexible with publisher identification standards.

Morey, C. C., Cong, Y., Zheng, Y., Price, M., & Morey, R. D. (2015). The color-sharing bonus: Roles of perceptual organization and attentive processes in visual working memory. *Archives of Scientific Psychology*, *3*, 18–29. <u>https://doi.org/10.1037/arc0000014</u>

A digital object identifier (DOI)

The reference list entry for a chapter in an edited e-book should be written as follows:

Author, A. A. (Year). Title of chapter. In B. B. Editor (Ed.), Title of book [E-reader version, if applicable] (pp. xxx–xxx). Retrieved from http://xxxx Author, A. A. (Year). Title of chapter. In B. B. Editor (Ed.), Title of book [E-reader version, if applicable] (pp. xxx–xxx). doi:xxxxx

Species concept for *Spiroplasma*

- Although the species is the basal category for taxonomic classification, the definition of a bacterial species is relatively vague and artificial.
- The basic species concept for Spiroplasma is rooted in the species concept for other prokaryotic taxa, which requires genomes exhibiting less than 70% similarity for separate species designations.

New category of indefinite rank Not covered by the Rules of the Bacteriological Code

- According to the "Ad Hoc Committee for the reevaluation of the species definition in bacteriology", microbiologists are encouraged to use the "Candidatus" concept for well characterized but as yet uncultured organisms.
- It is important to note that the category Candidatus is not covered by the Rules of the Bacteriological Code.
- Consequently, a name included in the category Candidatus:
- 1. Cannot be validly published, and it also
- 2. Cannot be designated sp. nov., gen. nov., etc.

Phytoplasma nomenclature Candidatus nomenclature

- Candidatus species are differentiated primarily on the basis of the comparative analysis of 16S rRNA sequences, other sequence data, ecological information, and metabolic data where available.
- The names included in the category Candidatus are usually written as follows:
- Candidatus (in italics), the subsequent name (s) in roman type (with an initial cap for the genus name) and the entire name in quotation marks.
- For example
- "Candidatus Phytoplasma allocasuarinae"
- "Candidatus Liberibacter asiaticus".

Phytoplasma nomenclature Candidatus nomenclature

- Candidatus species are differentiated primarily on the basis of the:
- Comparative analysis of 16S rRNA sequences, other sequence data, ecological information, and metabolic data where available.
- 1. Most plant pathogenic *Candidatus* are members of the genus *Candidatus* Phytoplasma'.
- Others are in different taxa such as:
- 1. 'Candidatus Liberibacter',
- 2. *Candidatus* Phlomobacter'
- 3. **'Candidatus Burkholderia hispidae'** the bacterial endosymbionts in leaf nodules of *Pavetta* (Rubiaceae).
- 4. *Candidatus* Streptomyces philanthi'- an endosymbiotic streptomycete in the antennae of *Philanthus* digger wasps.

Phytoplasma nomenclature Candidatus nomenclature Some Rules

- In 1992, Subcommittee on the Taxonomy of Mollicutes proposed the use of the name Phytoplasma in place of the use of the term MLO (Mycoplasma-like organism) "for reference to the phytopathogenic mollicutes".
- In 2004 the genus name Phytoplasma was adopted and is currently at *Candidatus* status which is used for bacteria that can not be cultured (IRPCM,2004).
- According to the "IRPCM Phytoplasma/Spiroplasma Working Team - Phytoplasma taxonomy group" the abbreviation for *Candidatus* should be *Ca*.

The International Committee on Systematics of Prokaryotes (ICSP)-Subcommittee on the Taxonomy of Mollicutes. Minutes of the meetings, 7 and 12 July 2002, Vienna, Austria.

Phytoplasma nomenclature Rules for the description of '*Ca*. Phytoplasma' <97.5% 16S rRNA gene sequence similarity to any previously described ' *Ca*. is considered as a novel '*Ca*. Phytoplasma' species

- Rules for the description of organisms as novel taxa within `*Ca*. Phytoplasma', as follows:
- a) A '*Candidatus* (*Ca*.) Phytoplasma' species description should refer:
- 1. To a single, unique 16S rRNA gene sequence (>1200 bp), and
- 2. That a strain can be recognized as a novel 'Ca. Phytoplasma' species if its 16S rRNA gene sequence has <97.5% similarity to that of any previously described 'Ca. Phytoplasma' species.
- The strain from which this sequence was obtained should be named the 'reference strain' and not the 'type strain'.
- Strains in which even minimal differences in the 16S rRNA gene sequence from the reference strain are detected do not 'belong' to the *Candidatus* species, but are 'related' to it.

Phytoplasma nomenclature Rules for the description of *Ca*. Phytoplasma' **Exceptional cases**

- b) Because of the highly conserved nature of the 16S rRNA gene, many biologically or ecologically distinct phytoplasma strains may warrant designation as new taxons, but these may fail to meet the requirement of sharing <97.5% sequence similarity with existing 'Ca. Phytoplasma', and may not be readily differentiated and classified.
- In that case, additional unique biological properties such as:
- antibody specificity,
- host range, and
- vector trans-mission specificity, as well as
- other molecular criteria (genes) need to be included for speciation (Seemüller and Schneider, 2004).

Phytoplasma nomenclature Rules for the description of *Ca*. Phytoplasma' **Exceptional cases**

- For such cases, description of two different species is recommended only when all three of the following conditions apply:
- i. The two phytoplasmas are transmitted by different vectors;
- The two phytoplasmas have a different natural plant host (or, at least, their behaviour is significantly different in the same plant host);
- iii. There is evidence of significant molecular diversity, achieved by either hybridization to cloned DNA probes, serological reaction or PCR-based assay.

Phytoplasma nomenclature Rules for the description of *Ca*. Phytoplasma'

- d) The rank of subspecies should not be used.
- e) The reference strain should be made available to the scientific community from the authors of the *Candidatus* species description paper and it should be deposited (unless *in vitro* micropropagation proves impossible) in the micropropagated collection of Dr Assunta Bertaccini, DiSTA, Patologia Vegetale, Universita`di Bologna, Italy.
- f) Manuscripts that describe a novel 'Ca. Phytoplasma' species should preferably be submitted to the International Journal of Systematic and Evolutionary Microbiology (IJSEM).
- g) The abbreviation for *Candidatus* is *Ca.* (e.g. '*Ca.* Phytoplasma japonicum' stands for '*Candidatus* Phytoplasma japonicum').

Minimal standards for the description of new taxa

- Minimal standards: A series of tests or other features that are recommended to be included in a description when validly publishing a new taxon.
- These are drawn up from different groups of bacteria under the auspices (guidance) of the Judicial Commission and published in the IJSEM.

IUMS> ICSP> Judicial Commission> *ad hoc* Committees

Hawksworth,2010

Minimal standards for the description of new taxa

- One of the functions of the Subcommittees on Taxonomy is to recommend to the ICSB (now ICSP) through the Judicial Commission minimal standards for the description of new taxa for the purpose of establishing validity of publication.
- According to Recommendation 30b, before publication of the name and description of a new species, the examination and description should conform at least to the **minimal standards** (if available) required for the relevant taxon of bacteria.
- According to the Report of the ad hoc committee for the reevaluation of the species definition in bacteriology, "Minimal characteristics should be provided and follow the guidelines set forth by various subcommittees of the ICSP.

Euzeby,2010

International Committee on Systematic Bacteriology

Subcommittee on the taxonomy of *Pseudomonas* and related organisms

Minutes of the meeting, 17 August 1999, Sydney, Australia

- Minute 7. Minimal standards.
- Minimal standards need to be proposed for the genus *Pseudomonas* and if possible also for other taxa.

Subcommittee on the taxonomy of *Pseudomonas*, and related organisms is changed into Subcommittee on the taxonomy of *Pseudomonas*, *Xanthomonas* and related organisms.

Minimal standards Bacterial identification for publication: when is enough enough?

- All systems used to identify bacteria, whether phenotypic or genotypic, have limitations, because no single test methodology will provide results that are 100% accurate.
- Reliance on a single identification system, phenotypic or genotypic, to identify an organism provides more opportunity for misidentifying bacterial species.
- Ideally, identification of any taxon is based upon a polyphasic approach that includes a combination of:
- 1. Phenotypic testing methods (e.g., biochemical testing, cellular fatty acid analysis, and numerical analysis), and
- 2. Genotypic testing methods (e.g., DNA-DNA hybridization, analysis of G+C content [in moles percent], and 16S rDNA gene sequencing).

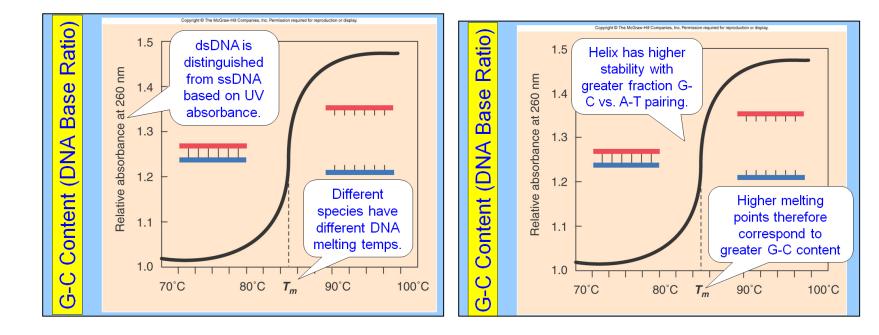
Janda and Abbott,2002; See also The function of *Ad hoc*

Minimal standards Limitations of biochemical tests (traditional tube methods or kits)

- Biochemical properties do not accurately reflect the entire extent of the genomic complexity of a given species.
- Furthermore, phenotypic properties can be unstable at times and expression can be dependent upon changes in environmental conditions, e.g., growth substrate, temperature, and pH levels.
- The drawbacks with some commercial systems is their constant number of the tests.
- For instance, the tests included on the API 20E strip in 1975 were still the same tests on the strip in 2001. Yet the number of newly described taxa increased substantially between 1975 and 2001.
- One of the consequences of all of these limitations is that some commercial systems have great difficulty identifying certain groups of bacteria.

Minimal standards Molecular biology and molecular techniques

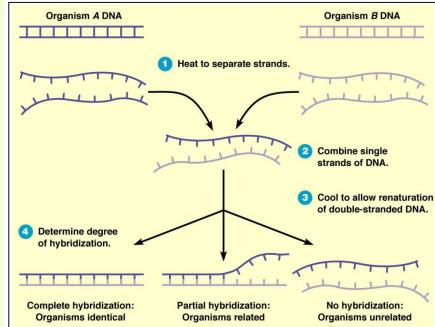
 The use of molecular biology and molecular techniques as an aid to bacterial taxonomy and identification was in its infancy in the 1960s.


1. DNA base composition:

 Early studies using DNA base composition could clearly distinguish between genomes that were unrelated based upon differences in G+C content (in moles percent).

2. DNA-DNA hybridization:

Pioneered by Don Brenner and his colleagues (1977). It provides a quantitative definition of what constituted a species, ~70% or greater DNA-DNA relatedness with a T_m of 5°C or lower.


G+C content and DNA denaturation

Abedon,2011

Nucleic acid hybridization DNA/DNA hybridization

- In the 1970s: DNA-DNA hybridization was introduced.
- Isolates that showed
 >70% DNA
 homology were
 considered to belong
 to the same species.

Minimal standards Molecular biology and molecular techniques

3. 16S rDNA gene sequencing:

- Sequencing of the small subunit (16S) rDNA genes is a powerful tool and by far the single most common molecular technique presently used for bacterial species identification.
- It is developed by the mid-1990s and is considered as a standard tool of microbial taxonomists not only for elucidating phylogenetic relatedness but also as a means of bacterial identification.
- Today, bacterial strains that defy (resist) identification by conventional commercial methodologies are often subjected to 16S rDNA sequence analysis so that a useful label can be placed on the isolate in question.

Limitations of Molecular biology and molecular techniques

16S ribosomal RNA:

- 1. ubiquitous in bacterial and archeal genomes;
- 2. matches to 98% of the 70% cut-off method;
- 3. High-throughput (output)method.
- Limitations of DNA hybridization:
- you cannot distinguish between some phenotypically distinct species (e.g. *Bacillus thuringiensis* and *B. anthracis*);
- 2. organisms were the 'universal' primers do not fit are not detected;
- 3. pour method for resolving sub-populations within species.

Limitations of Molecular biology and molecular techniques

• Limitations of 16S rDNA gene sequencing:

- Although this technique relies on sequencing of the DNA that encodes the 16S rRNA subunit, like phenotypic tests, it surveys only a small portion of the microbial genome.
- Since ribosomal genes are highly conserved, sequence variation between strains belonging to different species from distinct genera is less evident with rDNA gene sequencing than with DNA pairing studies, where DNA relatedness values are used to compare strains.
- It is generally accepted that an unidentified isolate whose rDNA gene sequence is <97% similar to those of the isolate's closest phylogenetic neighbors constitutes a new taxon.
- Many attempted were made to establish cutoff values for strain relatedness based upon sequencing of 16S rDNA.

Minimal standards Limitations of DNA sequences deposited in microbial genome databases

- The accuracy of a partial or complete sequence of a 16S rDNA gene or of any other bacterial gene (s) deposited in GenBank or other databases is dependent upon how extensively the bacterial strain from which the sequences were derived has been characterized.
- Since biochemical characteristics are still the touchstone for bacterial identifications, the choice in the use of commercial versus conventional methodologies for the identification of strains is important.

Minimal standards Limitations of DNA sequences deposited in microbial genome databases

- There are many more examples in the literature of the misidentification of bacteria by commercial systems.
- Thus, while the sequence data may be correct, if it is incorrectly associated with the wrong taxa, major errors in the literature can result.
- Sequence heterogeneity in the literature can result from strain misidentification.

Proposed guidelines for identification of bacterial species for publication purposes Minimum standard for description of new species, case reports and publication studies

- Christensen and colleagues,2001 (Ref. 4) made a formal proposal in this area.
- They proposed that Recommendation 30b of the Bacteriological Code (1990 Revision) be revised so that proposals to recognize new species are based:
- 1. not upon a single strain, but
- 2. rather upon a minimum of 5 to 10 strains from
- 3. geographically and epidemiologically unrelated areas.

Proposed guidelines for identification of bacterial species for publication purposes Minimum standard for description of new species, case reports and publication studies

- We agree with this proposal and believe that similar (and perhaps expanded guidelines) should be applied to case reports or a limited series of case reports involving unusual (rare) bacterial species or infrequent biotypes (genotypes) of established (traditional) pathogens.
- In addition, under these guidelines, proposals to recognize new species would require confirmation of the bacterial species or unusual phenotype or genotype by two independent laboratories (Table 1).

Proposed guidelines for identification of bacterial species for publication purposes

An alternative proposal that should be both technically and financially feasible and would help to reduce the number of publications with misidentifications

Type of study	Circumstances	Minimum requirements
Description of new species	Description of an organism and proposal of a new bacterial species	Identification based upon at least five strains (i) that have been demonstrated to be different by at least one molecular technique (e.g., pulsed-field gel electrophoresis, PFGE) and (ii) that are not related temporally, geographically, or epidemiologically.
Case report (single)	Isolation of a species identified as unusual or rare (e.g., unusual biotype of a common species or a common species associated with a new disease, disease syndrome, or anatomic site of isolation)	(i) Species or biotype identification confirmed by two independent laboratories (preferably, one of the two serves in a reference capacity); (ii) identification methods must differ (e.g., a commercial system and a traditional [tube] method) and must generate results indicating very good to excellent identification likelihood; and (iii) relevant phenotype(s) or genotype(s) used for identification and method(s) of detection (e.g., AP120E, septyl code, and identification probability [results showing excellent, very good, or good likelihood], and/or percent similarity or divergence from a published 16S rDNA gene sequence already in a database) must be reported.
Case report (series)	Isolation of a single agent or multiple agents, some or all of which are species that are uncommon or at least rarely identified in the clinical laboratory.	(i) For a single species, identification of at least two isolates confirmed by two independent methods; (ii) for multiple species, identification of at least one isolate of each species confirmed by two or more methods; and (iii) laboratory data indicating that isolates of the same species do not represent the same strain must be provided.
Population studies	Isolation of multiple strains belonging to multiple taxa (e.g., in epidemiological investigations or validation studies of identification systems).	Identification of each strain by at least a single universally available (i.e., commercial) method.

Minimal requirements for a description of a new species

- Sneath (1977) suggested the minimum number for description of a new species is about 10 strains.
- 1. A group of bacteria derived from a single cell is called a strain;
- 2. Closely related strains constitute a bacterial species.
- If a prokaryote strain is considered as a new species, authors should at first explain why they consider this as a new species;
- They should carry out a thorough comparison between the "new" and the known species (and genera) of the bacterial group with which the new organism shows most similarities.

Minimal requirements for a description of a new species

- If, as is usually the case, the new organism can be allotted to one of the major groups of prokaryotes, the description of a new species (and/or genus) should contain at least the information presented in the next Table.
- The requirements demanded and recommended by the International Code of Nomenclature of Bacteria (now prokaryotes) when a new species is described were discussed in "Nomenclature.

Minimum data required for the description of a new species

	Required data	Desired/required data, if applicable
Cell morphology	Cell shape ^a Cell size (diameter, length) Motility Visible internal or external structures ^a Formation of typical cellular aggregate ^a Occurrence of cell differentiation ^a Ultrastructure (general) ^b	Color Flagellation type ^a Spores ^a , appendages ^a , capsules ^a , sheaths ^a Life cycle ^a , heterocysts ^a , hormogonia ^a Ultrastructure of flagella, envelope, cell wall ^b
Colonial morphology	Appearance of cell suspensions Appearance of colonies	Color of suspension (absorption spectra) Color of colonies Motility of colonies Formation of fruiting bodies ^a Formation of mycelia ^a
Staining behavior Cell constituent	Gram stain DNA base ratio Reserve materials	Acid-fast stain, spore stain, flagellum stain Nucleic acid homology; rRNA sequences Cellular pigments Cell wall and membrane constituents Typical enzymes
Physiology	Temperature range and optimum pH range and optimum Modes of energy metabolism (phototrophy, chemotrophy, lithotrophy, organotrophy) Relation to oxygen List of electron acceptors List of carbon sources List of nitrogen sources List of sulfur sources	Salinity or osmolarity requirements Vitamin requirements, Typical metabolic products formed (acids, osmolytes, pigments, antibiotics, toxins, antigens) Tolerances and susceptibilities
Ecology	Natural habitat(s)	Pathogenicity, host range Antigen formation Serology Phage susceptibility Symbiosis

^aTo be demonstrated by light microscopy. ^bTo be demonstrated by electron microscopy. Hormogonia are motile filaments of cells formed by some cyanobacteria. Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts.

The Prokaryotes (chapter 1.4),2006

Revised minimal standards for description of new species of the class *Mollicutes*

- The mandatory (law) requirements are:
- 1. Deposition of the type strain into two recognized culture collections, preferably located in different countries;
- 2. Deposition of the 16S rRNA gene sequence into a public database, and a phylogenetic analysis of the relationships among the 16S rRNA gene sequences of the novel species and its neighbours;
- 3. Deposition of antiserum against the type strain into a recognized collection;
- 4. Demonstration, by using the combination of 16S rRNA gene sequence analyses, serological analyses and supplementary phenotypic data, that the type strain differs significantly from all previously named species; and
- 5. Assignment to an order, a family and a genus in the class, with an appropriate specific epithet.

Revised minimal standards for description of new species of the class *Mollicutes*

- The publication of the description should appear in a journal having wide circulation.
- If the journal is not the International Journal of Systematic and Evolutionary Microbiology, copies of the publication must be submitted to that journal so that the name may be considered for inclusion in a Validation List as required by the International Code of Bacteriological Nomenclature (the Bacteriological Code).
- Updated informal descriptions of the class *Mollicutes* and some of its constituent higher taxa are available as supplementary material in IJSEM Online.

Description of new species

- Anyone who is working on isolation of bacteria should have a good chance of finding a new species.
- Using genome sequencing, I would say that your chance of finding new species from one isolation study from soil or water should be almost 100%.
- It is our duty, as good microbiologists, to make them known to the scientific world by describing them as new species.
- 1. Assuming that you have isolated multiple strains, designate the type strain of your new species.
- 2. If you have a single strain, that strain will become the type strain of the new species.

- Prove it is a new species by 16S rRNA gene (16S) and genome sequencing
- Start with 16S sequencing and obtain a full-length, highquality raw sequence.
- Don't trust the assembled sequence from sequencing firms, as these service companies almost never edit the final sequence.
- Always check the chromatograms (Sanger *ab1* files) manually. I have seen terrible 16S sequences used for creating a new species, which are not really new species.
- Search the sequence against the EzBioCloud 16S database at www.ezbiocloud.net.

- If you find any hit lower than 98.7%, you probably have a new species given that your sequence is of good quality.
- Let's say you have ~99% 16S similarity, don't be disappointed.
- You still have a very good chance of finding a new species.
- I suggest you go for whole genome sequencing. For the taxonomic purposes, a guideline was published here.
- Calculate Average Nucleotide Identity (ANI) values between your isolate and type strains of closely related species in the 16S searches using EzBioCloud database.
- The ANI cutoff is 95~96% for species.

- If you have indeed confirmed that you have a new species, try to obtain diagnostic phenotypic data. This can vary depending on the taxa.
- Obtain the general morphological and physiological characteristics.
- Obtain the differential characteristics that can be used for separating your new species from others.
- This data is usually given as a Table (e.g. see Table 1 of this paper as an example).
- Bergey's Manual is a great resource to obtain phenotypic data of related species.

- Please add the whole genome sequence of type strain in your study.
- Like the 16S gene, the genome sequence is becoming the taxonomic basis for all disciplines of microbiology.
- If you do not sequence your new genome, you are leaving a hole in the system which must be filled by somebody else.
- If you have a case for a new species and lack the budget for genome sequencing, ChunLab would be happy to help you free of charge.
- Currently, Syst. Appl. Microbiol. and IJSEM require the genome sequence of the type strain at least for any new classification. EzBioCloud, 2019

- Deposit the type strains to two culture collections in two different countries.
- To find suitable culture collections, use the WFCC site.
- My recommendation is to find culture collections that at least have an English website.
- Make sure that you get the certificate of the deposition from two culture collections in two countries.
- If they don't know what the certificate of the deposition is, don't bother and try to deposit to other culture collections.
- This process takes several months, so start as soon as you find that you have a new species.

Tips for writing a taxonomic paper describing new species (Continued)

Write the taxonomic proposal as a manuscript.

As with your usual content in any paper, a proper etymology and description should be given (see below as an example).

Description of Halostagnicola bangensis sp. nov.

Halostagnicola bangensis (bang.en'sis. N.L. fem. adj. bangensis pertaining to Bange, Tibetan soda lake in China, from which the strain was isolated).

Cells are motile and pleomorphic, with coccoid to bacilar shapes. The size of the single cells is $1.0-1.2 \times 2.0-4.0 \mu m$ and they grow separately without forming groups. Gramstain-variable; in young cultures most cells are Gramstain-negative, while few cells are observed as Gram-stain-positive. Colonies on solid medium after incubation at 37 °C for 30 days are circular, regular edged, smooth, convex and

:

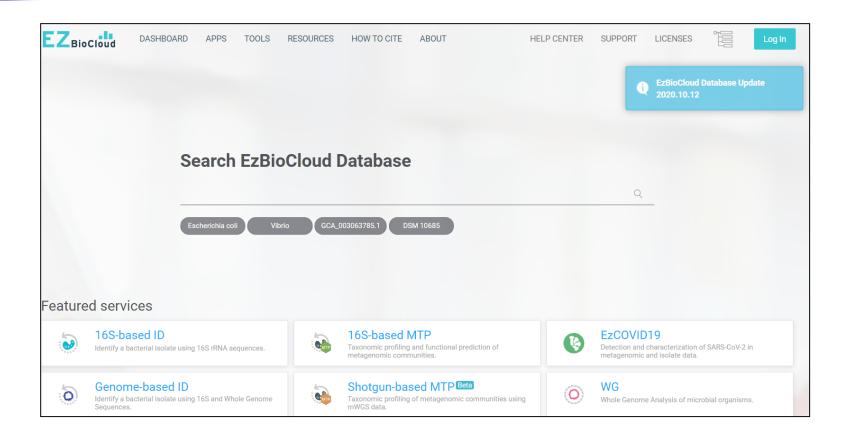
The type strain is T26^T (=CECT 8219^T=IBRC-M 10759^T= JCM 18750^T), isolated from sediment of the soda saline lake Bange located in Tibet, China. The genomic DNA G+C content of the type strain is 60.1 mol% ($T_{\rm m}$).

- Submit the manuscript to IJSEM with two certificates of deposition of the type strain.
- It is OK to submit to other journals as long as they publish the papers in English.
- If it is published outside of IJSEM, please make sure that you submit the pdf of the publication plus the two certificates of deposition to IJSEM for validation.
- Without validation, your new species will not be properly acknowledged by other scientists. In fact, in many cases, it adds more confusion than good.

Tips for writing a taxonomic paper describing new species (Continued)

Resources for up-to-date nomenclature

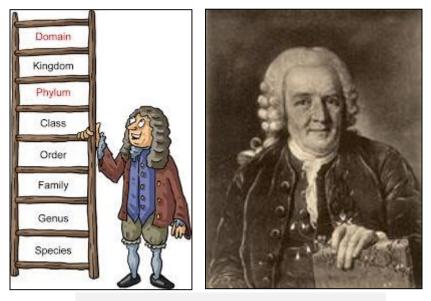
- Please note that only the Approved Lists of Bacterial Names of 1980, and the Notification and Validation Lists in the IJSB and IJSEM represent the official nomenclature.
- However, IJSEM or other officially recognized bodies do not provide an organized, up-to-date list of validly published names at present.
- Fortunately, the following resources are maintained properly and are therefore useful. Please bear in mind that these websites may contain human errors.
- 1. EzBioCloud.net
- 2. List of Prokaryotic names with Standing in Nomenclature.


- EzBioCloud.net
- Jon Jongsik Chun, Ph.D.

- Jon is a scientist & entrepreneur dedicated to developing bioinformatics related to bacterial systematics, genomics, and microbiome.
- He is a professor at Seoul National Univ. and founder of ChunLab, Inc.
- He is best known as a creator of EzBioCloud (formerly EzTaxon) database, and recipient of the Bergey Award 2018.

Species Description

Tips for writing a taxonomic paper describing new species (Continued)



The Code Binomial nomenclature The Rules

- The scientific name, or more specifically the species name, is a binomial (two names).
- The bacteriological code also uses the binomial system.
- The specific epithet is unique, having only one correct name each taxon above species, from genus up to and including order can only have one correct name, which is the earliest name published in accord with the Code (Rule 23a).
- The correct name of a species is a binary combination of a generic name and species epithet (Genus name+species name), applied in a particular classification.
- The term 'epithet' is applied specifically to species names (Principal 8, Note 1).

Binomial nomenclature The Linnaean Binomial Nomenclature

 The Swedish naturalist, Carolus Linneaus developed a scientific system of naming organisms.

Carolus Linnaeus (1707-1778)

Binomial nomenclature Some more Rules

- According to scientific nomenclature, each organism is assigned two names, or a binomial:
- A genus and a specific epithet, or species
- Examples:
- Erwinia amylovora

Binomial nomenclature

- He assigned two Latinized names to each organism:
- A genus consists of a group of similar species.
- Similar genera are grouped into a family.
- The species name or "specific epithet" is unique to the new species.
- The genus name is indicated by a capital letter whereas, the species name starts with a lower case letter.
- By convention both names are italicized (or underlined).
- Example: Streptomyces scabies Once a scientific name has been used in entirety it can subsequently be abbreviated as follows:
- S. scabies

Binomial nomenclature Italic type (or underlining) *versus* roman type

- According to Chapter 4 (Advisory Notes) of the Bacteriological Code (1990 Revision), scientific names of taxa should be preferably indicated by a different type face, e.g., italic or by some other device to distinguish them from the rest of the text.
- The Bacteriological Code (1990 Revision) sets no binding standard in this respect, as typography is a matter of editorial style and tradition not of nomenclature.
- The name of genera, species, and subspecies are 1. generally printed in italics (or underlined), but
- for higher categories conventions vary: in Britain they are 2. often in ordinary roman type (e.g. Times New), but in America or in France they are often in italics. Euzeby,2010

Binomial nomenclature

- The first name beginning with a capital indicates the genus, e.g. Xanthomonas, the second name the species epithet.
- e.g. *citri* (no capital).
- Species name is never abbreviated.
- When the exact name has to be mentioned, the author (s) giving the first description of the bacterium with the prefix 'ex', and those who made the last taxonomic (re-).
- e.g. X. gardneri (ex Sutic 1957) Jones et al.,2006, nom rev., comb. nov.

Binomial nomenclature

Relative to habit, habitat, geography, growth, morphology

- Scientific names should be unique, unchanging and descriptive (i.e. relative to habit, habitat, geography, growth, morphology).
- Examples of genus/species names:
- The name of the person describing the organism (*Erwinia amylovora*, the name in honor of Erwin Smith).
- 2. The habitat of the organism(the disease on citrus).
- 3. The appearance of the organism (X*antho-* produces a yellow pigment).
- Some names may reflect a disease or infectious process caused by an organism (e.g., *scabies* describes the ability to produce scab).

97

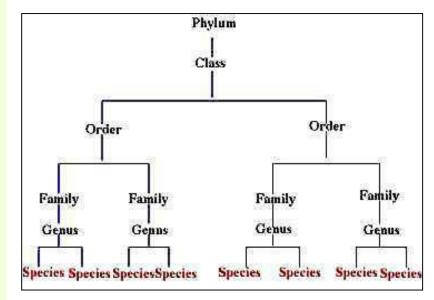
Binomial nomenclature

Scientific Binomial	Source of Genus Name Scientific	Source of Specific Epithet
Klebsiella pneumoniae	Honors Edwin Klebs <i>Klebsiella</i>	The disease
Erwinia amylovora	Name in honour of Erwin Smith <i>Erwinia</i>	The disease
Pectobacterium carotovorum	A pectolytic bacterium	carrot-devouring
Streptomyces scabiei	Chains of cells (<i>strepto</i> -)	Causes scab
Xanthomonas citri	Produces a yellow pigment (X <i>antho-</i>)	The disease on citrus
Sphingomonas melonis	<i>Sphingos</i> of sphinx A mythical creature with the head of a human and the body of a lion	Causal agent of brown spot of melon fruits

Klebsiella is a type of Gram-negative bacteria that can cause different types of healthcare-associated infections, including *pneumonia*, bloodstream infections, wound or surgical site infections, and meningitis.

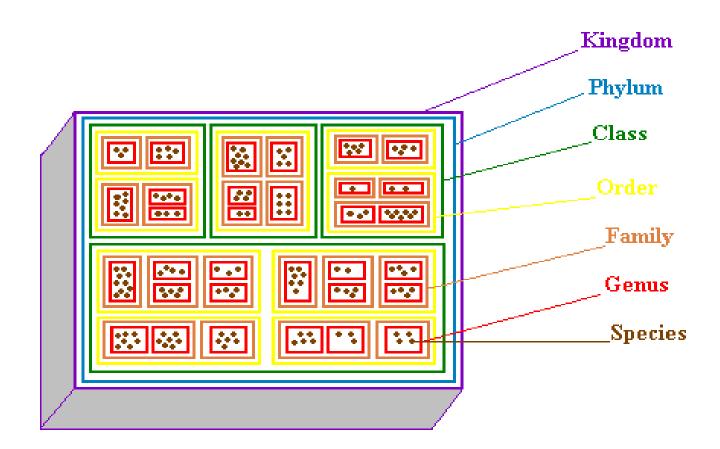
Binomial nomenclature

Relative to habit, habitat, geography, growth, morphology, discoverer or a famous person in the field of microbiology


- List of bacterial genera named after geographical names:
- 1. Aegyptianella: Aegyptus (the Latin name of Egypt)
- 2. Indibacter: India
- 3. Koreibacter: Korea
- List of bacterial genera named after personal names:
- 1. Erwinia: Erwin Frink Smith, an American bacteriologist.
- 2. Euzebya: Jean P. Euzéby, a French bacteriologist.
- 3. Euzebylla: Jean P. Euzéby, a French bacteriologist.
- 4. Ewingella: William H. Ewing, an American bacteriologist.
- 5. Sneathia: P. H. A. Sneath, a British bacteriologist.

Binomial nomenclature Valid names

- The epithet *paradisiaca*, first published as *Erwinia paradisiaca* (Brown-black root rot of banana) in the Approved Lists.
- Reclassified in *Brenneria paradisiaca* based solely on a comparative analysis of 16S rDNA sequences.
- And then recently as *Dickeya paradisiaca* based on further comparative molecular analyses.
- Bacteriologists must therefore choose binomials from validly published names.


Linnaean hiearchy The ranking of taxonomic categories

- Taxon: A group or "level" of classification.
- Hierarchies: Broad divisions are divided up into smaller divisions.
- Bacterial classification follows Linnaean hierarchical system that starts with a few categories at the highest level, and further subdivides them at each lower level.
- Species is basic taxonomic unit.
- Subspecies is the lowest phylogenetically supported taxonomic rank that has official standing in nomenclature.

Taxon, plural Taxa, any unit used in the science of biological classification, or taxonomy. Names of taxa above the rank of species are single words.

Linnaean system The ranking of taxonomic categories

Classification.ppt, 19 Aug. 2010

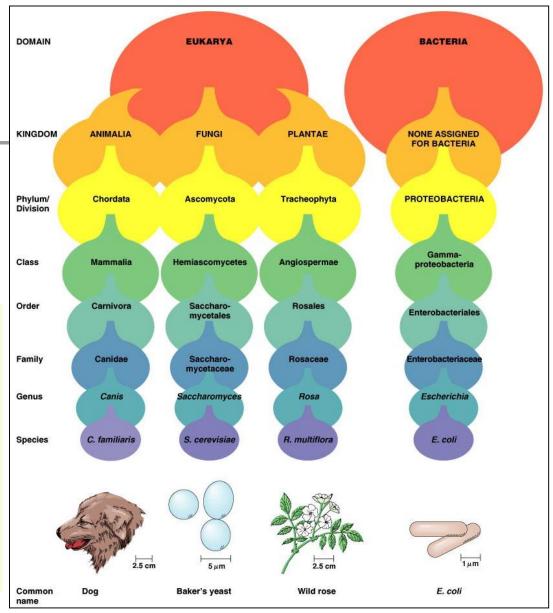
Linnaean hiearchy Levels of Classification

- Domain: The highest of taxonomic rank ('80s)
- Kingdom (Not used by most bacteriologists),1969
- Phylum or division of the kingdom
- Class
- Order
- Family (related genera)
- Genus (related species) plural: Genera
- Species (related strains) both singular & plural
- Subspecies

Note: Division rank is equivalent to phyla.

It has been estimated that ~1,300 bacterial phyla exist. As of May 2020, 41 bacterial phyla are formally accepted by the LPSN, 89 bacterial phyla are recognized on the Silva database, dozens more have been proposed, and hundreds likely remain to be discovered.

Linnaean hierarchy


Example:

Division: Gracilicutes

Class: Scotobacteria

Family: Enterobacteriaceae

> Genus: *Erwinia* Species: *amylovora*

Karlm,2004

Nomenclature of strains

- In microbiology, the strain designation is often related to:
- Pathogenicity (Pathogenic *E. coli* like O157:H7);
- 2. Antagonistic activitity (*A. radiobacter*, K84);
- But otherwise these are very similar to other related strains.
- Also strain may be designated in any manner, e.g.
- 1. by the name of an individual,
- 2. by a locality, or
- 3. by a number.

Table 10.1 Taxonomic Ranks of the Bacterium Escherichia coli

ank	Formal Rank	Example
a	Domain	Bacteria
	Phylum	Proteobacleria
· <mark>2</mark>	Class	Gammaproteobacteria
axonomic	Order	Enterobacteriales
Ĕ	Family	Enterobacleriaceae
9	Genus	Escherichia
a	Species	coli
H	Strain	O157:H7

One difficulty is deciding how different two isolates must be before one describes them as different species rather than as different strains.

Nomenclature of strains *P. syringae* pv. *tomato* strain T1 vs. Pst DC3000

- A comparison of *P. syringae* pv. *tomato* strain T1 against strain DC3000 found that the genomes were highly similar except for the T3SE repertoires (stock of skills), which had diverged significantly.
- 1. Pst DC3000 is a pathogen of both tomato and *Arabidopsis thaliana*, whereas
- 2. Pst T1 is pathogenic on tomato but not on *A. thaliana*.

Nomenclature of Infrasubspecific Taxa Infrasubspecific designation

- Taxa below the rank of subspecies (infrasubspecific subdivisions) are not covered by the Rules of the *Bacteriological Code* (1990 Revision) [Rules 5d and 14a].
- The preferred names of infrasubspecific subdivisions are:
- Biovar (usual abbreviation: bv.),
- chemoform, chemovar,
- cultivar (usual abbreviation: cv.),
- morphovar,
- pathovar (usual abbreviation: pv.),
- phagovar,
- serovar.
- Chemovar, chemotype and chemoform: An infrasubspecific category for bacteria characterized on the basis of its chemical constitution.
- Cultivar: Cultivated variety of plant from which sequence was obtained.

Definition of Infra-subspecific ranks

- The genetic variability of microbes is further subdivided into subspecies or types:
- Serovars are antigenically distinct organisms.
- For example, over 2,000 serovars of Salmonella have been identified which are typed according to their flagella (H),capsule (K) and lipopolysaccharide (O)antigens.
- The antibodies are generally directed against Oserogroup1 of *D. chrysanthemi*, recognizing only 68% of the strains (Samson *et al.*,1990).
- Biovars are organisms which can differ biochemically.
 e.g. they may possess differing forms of enzymes.
- Pathovar: Pathogenic properties for certain hosts.
- Phagovar: Ability to be lysed by certain bacteriophages.

Nomenclature of Infrasubspecific Taxa Infrasubspecific designation Phagovar

- An infraspecific classification in bacteria based on sensibility against bacteriophages:
- An infrasubspecific taxon is designated or cited by the name of the species followed by the infrasubspecific term used to designate this infrasubspecific subdivision followed by the infrasubspecific designation.
- Example:
- Staphylococcus aureus phagovar 81
- *Xanthomonas citri* phagovars Cp1, Cp2 and Cp3
- Pseudomonas syringae pv.morsprunorum phagovar A15

Suffixes

The suffix "-bacteria" for phyla 56 phyla in the domain "Bacteria"

- As of September 2012, there are 30 phyla in the domain "Bacteria" accepted by LPSN (now LPSN-DSMZ's website, https://lpsn.dsmz.de).
- There are no fixed rules to the nomenclature of bacterial phyla.
- It was proposed that the suffix"-bacteria" be used for phyla, but generally the name of the phylum is generally the plural of the type genus.
- E.g. *Actinobacteria* from *Actinomyces*.
- Exception:
- the *Firmicutes*, *Cyanobacteria*, and *Proteobacteria*, whose names do not stem from a genus name.

Wikipedia,2014; Euzeby,2020

Suffixes

The name of a taxon between genus and class is formed by the addition of an appropriate suffix to the stem of the name of the type genus

 Nomenclature: Bacterial names may originate from any language, but they must be given a Latin suffix (i.e., they Latinized).

Taxonomic rank	Suffixe	Example
Subtribe	-inae	
Tribe*	-eae	
Subfamily	-oideae	
Family	-aceae	Enterobacteriaceae
Suborder	-ineae	
Order	-ales	Pseudomonadales
Subclass	Proposed suffix -idae	
Class	Proposed suffix -ia	Actinobacteria
Division or phylum**	-	
Domain or empire**	-	

*Taxonomic category not in current use; ** Taxonomic category not covered by the Rules.

Domain Bacteria Bacterial phylum The bacterial phyla are the major lineages (phyla or divisions) of the domain Bacteria

Euzeby,2020

- <u>"Abditibacteriota"</u>
- <u>"Acidobacteria"</u>
- Actinobacteria
- <u>"Candidatus</u> Aminicenantes"
- <u>"Aquificae"</u>
- *"Armatimonadetes"*
- <u>"Bacteroidetes"</u>
- Balneolaeota
- *"Caldiserica*"
- <u>"Calditrichaeota"</u>
- <u>"Chlamydiae"</u>
- *<u>"Chlorobi"</u>*
- Chloroflexi
- <u>"Chrysiogenetes"</u>
- <u>"Candidatus</u> Cloacimonetes"
- <u>"Coprothermobacterota"</u>
- <u>"Candidatus</u> Cryosericota"
- <u>"Cyanobacteria"</u>
- <u>"Deferribacteres"</u>
- <u>"Deinococcus-Thermus"</u>
- <u>"Candidatus Dependentiae"</u>
- Dictyoglomi
- *"Elusimicrobia*"
- <u>"Candidatus</u> Eremiobacteraeota"
- <u>"Candidatus</u> Fermentibacteria"
- <u>"Fibrobacteres"</u>
- *"Firmicutes*"
- *"Fusobacteria*"

- *"Fusobacteria*"
- <u>"Gemmatimonadetes"</u>
- <u>"Candidatus</u> Goldbacteria"
- "Candidatus Kapabacteria"
- <u>"Kiritimatiellaeota"</u>
- "Candidatus Krumholzibacteriota"
- *"Lentisphaerae*"
- <u>"Candidatus Margulisbacteria"</u>
- <u>"Candidatus Mcinerneyibacteriota"</u>
- <u>"Candidatus</u> Melainabacteria"
- <u>"Candidatus Microgenomates"</u>
- <u>"Nitrospinae"</u>
- <u>"Nitrospirae"</u>
- <u>"Candidatus</u> Omnitrophica"
- <u>"Candidatus</u> Parcubacteria"
- <u>"Candidatus</u> Parcunitrobacteria"
- Candidatus Peregrinibacteria
- "Planctomycetes"
- Proteobacteria
- "Rhodothermaeota"
- <u>"Spirochaetes"</u>
- "Candidatus Sumerlaeota"
- <u>"Synergistetes"</u>
- <u>"Tenericutes"</u>
- *<u>"Thermodesulfobacteria"</u>*
- "Thermomicrobia"
- <u>"Thermotogae</u>"
- "*Verrucomicrobia*"

Taxa above the rank of class Taxonomic categories not covered by the Rules of the Bacteriological Code

The higher taxa proposed by Cavalier-Smith are generally disregarded by the molecular phylogeny community (e.g. Pace, N. R. (2009). "Mapping the tree Life: Progress and Prospect". Microbiology and Molecular Biology Reviews 73 (4): 565-576.

- Actinobacteria Cavalier-Smith 2002, subdivisio nov. ÷. Aquificae Reysenbach 2001, phyl. nov. Archaebacteria Cavalier-Smith 2002, divisio nov. . Bacteria Cavalier-Smith 2002, regnum nov. Chloroflexi Garrity and Holt 2001, phyl. nov. *Chrysiogenetes* Garrity and Holt 2001, phyl. nov. Crenarchaeota Garrity and Holt 2001, phyl. nov. Crenarchaeota Cavalier-Smith 2002, subdivisio nov. Cvanobacteria (ex Stanier 1974) Cavalier-Smith 2002, divisio nov., nom. rev. **Deferribacteres** Garrity and Holt 2001, phyl. nov. . Endobacteria Cavalier-Smith 2002, subdivisio nov. ÷. Eobacteria Cavalier-Smith 2002, divisio nov. . Eobacteria Cavalier-Smith 2002, infraregnum nov. Eurvarchaeota Garrity and Holt 2001, phyl. nov. Euryarchaeota Cavalier-Smith 2002, subdivisio nov. . Eurythermea Cavalier-Smith 2002, superclassis nov. Exoflagellata Cavalier-Smith 2002, superdivisio nov. Firmicutes corrig. Gibbons and Murrav 1978, divisio. Gemmatimonadetes Zhang et al. 2003, phyl. nov. Geobacteria Cavalier-Smith 2002, subdivisio nov. Glycobacteria Cavalier-Smith 2002, infraregnum nov. . Gracilicutes Gibbons and Murray 1978, divisio. Lentisphaerae Cho et al. 2004, phyl. nov. *Mendosicutes* Murray 1984, divisio nov. *Negibacteria* Cavalier-Smith 2002, subregnum nov. Neobacteria Cavalier-Smith 2002, superclassis nov. • Phycobacteria Cavalier-Smith 2002, subdivisio nov. Planctobacteria Cavalier-Smith 2002, divisio nov. Posibacteria Cavalier-Smith 2002, divisio nov. . Proteobacteria Cavalier-Smith 2002, divisio nov. Rhodobacteria Cavalier-Smith 2002, subdivisio nov. • Sphingobacteria Cavalier-Smith 2002, divisio nov. **Spirochaetae** Cavalier-Smith 2002, divisio nov. *Tenericutes* Murray 1984, divisio nov. Thermodesulfobacteria Garrity and Holt 2001, phyl. nov. *Thermomicrobia* Garrity and Holt 2001, phyl. nov. Thermotogae Reysenbach 2001, phyl. nov. Thiobacteria Cavalier-Smith 2002, subdivisio nov.
 - Unibacteria Cavalier-Smith 2002, subregnum nov.

Domain Bacteria Bacterial phyla Bacteroidetes

- Phylum: Bacteroidetes
- Class: Bacteroidetes
- Order: Bacteroidales
- Family: Bacteroidaceae
- Genus: Bacteroides
- Species: fragilis
- The phylum Bacteroidetes is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

Bacterial nomenclature All useful information on bacterial or general nomenclature

- 1. Bergey's Manual of Determinative Bacteriology, now named Bergey's Manual of Systematic Bacteriology (Boone *et al.*,2001) is the standard reference on bacterial classification.
- 2. CCUG, Sweden
- 3. Species 2000 CheckList
- List of Prokaryotic names with Standing in Nomenclature (LPSN) creator by J.P. Euzéby and now maintained by Aidan C. Parte. This website was integrated into the DSMZ's Prokaryotic Nomenclature Up-to-date (PNU) database with new email address: <u>https://lpsn.dsmz.de</u>.

Bacterial nomenclature

All useful information on bacterial or general nomenclature

<i>Bergey's Manual of</i> <i>Determinative Bacteriology</i> Provides identification schemes for identifying bacteria and archaea.	Morphology, differential staining, biochemical tests
<i>Bergey's Manual of Systematic</i> <i>Bacteriology</i> Provides phylogenetic information on bacteria and archaea.	Based on rRNA sequencing
Approved Lists of Bacterial Names	Based on published articles
Lists species of known prokaryotes. Appear in the ISPP website	

Bacterial nomenclature Bergey's Manuals

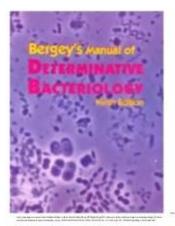
- The "bible" of bacterial identification is a book called Bergey's Manual of Determinative Bacteriology, based on morphology, differential staining, biochemical tests.
- He was the first doctor to isolate the bacterium *Actinomyces* from a human being, in 1907.
- Bergey is long dead, but the American Society for Microbiology continues to revise and publish the book.

David Hendricks Bergey

Born	December 27, 1860, Pennsylvania
Died	September 5, 1937 (aged 76) Philadelphia, Pennsylvania
Alma mater	University of Pennsylvania
Fields	Bacteriology
Institutions	University of Pennsylvania

Bacterial nomenclature Bergey's Manuals

 David Hendricks Bergey together with the Society of American Bacteriologist developed a single scheme to cover all the described bacteria.

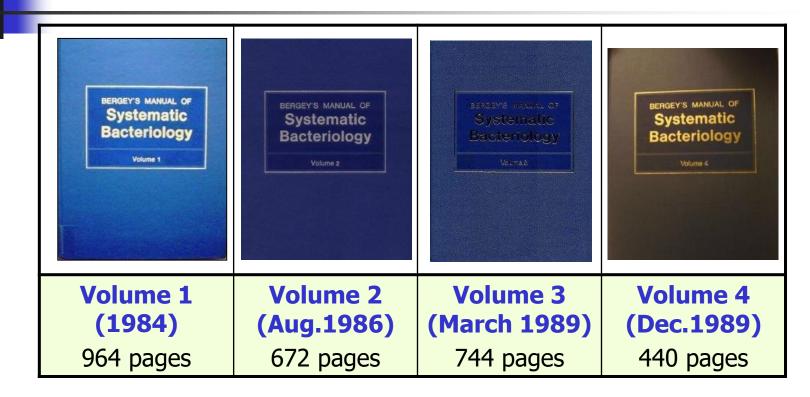

David Hendricks Bergey

Editions

Bergey's Manual of Determinative Bacteriology

Bergey's Manual of Systematic Bacteriology, 1st ed.

Bergey's Manual of Systematic Bacteriology, 2nd ed.


Bergey's Manual of Determinative Bacteriology 2nd-8th Editions (1923-1974)

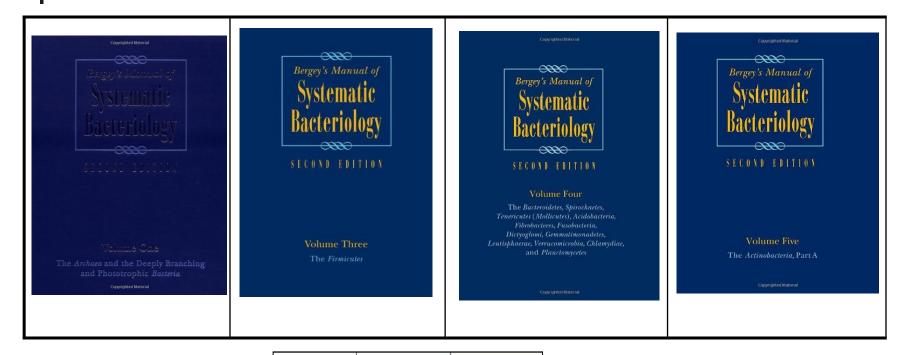
- Classifies bacteria by cell wall composition, morphology, biochemical tests, differential staining, etc.
- The classification in Bergey's Manual is accepted by most microbiologists as the best consensus for prokaryotic taxonomy.
- Chester's Manual of Determinative Bacteriology, 1901 (long out of date).
- Bergey's Manual of Determinative Bacteriology (ed.1,1923);
- Bergey's Manual of Determinative Bacteriology (ed. 2,1925);
- Bergey's Manual of Determinative Bacteriology (ed. 3,1930);
- Bergey's Manual of Determinative Bacteriology (ed. 4,1936);
- Bergey's Manual of Determinative Bacteriology (ed. 5,1939);
- Bergey's Manual of Determinative Bacteriology (ed. 6,1948);
- Bergey's Manual of Determinative Bacteriology (ed. 7,1957);
- Bergey's Manual of Determinative Bacteriology (ed. 8,1974).

Bergey's Manual of Systematic Bacteriology (Vol.1-4) 1st edition(1984-1989)

- Classifies bacteria via evolutionary or genetic relationships.
- John G. Holt, Editor-in-Chief
- Williams & Wilkins, Baltimore, MD
- Published in 4 volumes:
- Volume 1 (1984)
 - Gram-negative Bacteria of general, medical, or industrial importance
- Volume 2 (1986)
 - Gram-positive Bacteria other than Actinomycetes
- Volume 3 (1989)
 - Archaeobacteria, Cyanobacteria, and remaining Gramnegative Bacteria
- Volume 4 (1989)
 - Actinomycetes

Bergey's Manual of Systematic Bacteriology (Vol.1-4) 1st edition (1984-1989)

In these volumes many higher taxa are defined in terms of phenotype. Mix Phylogenetic/Phenetic-5 Kingdoms.

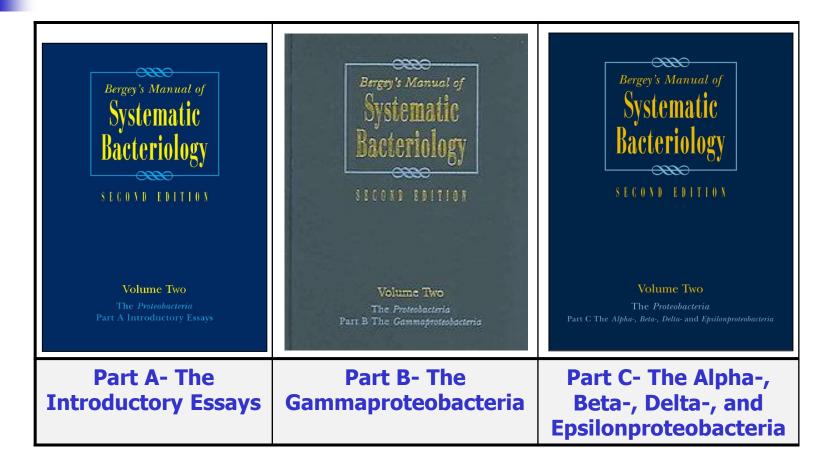

Bergey's Manual of Systematic Bacteriology(Vol.1-5) 2nd Edition(2001-2012)

- The second edition is being published in 5 volumes.
- The current volumes differ drastically from previous volumes in that many higher taxa are not defined in terms of phenotype, but solely on 16S phylogeny.
- Based on Phylogenetic-3 Domains.
- Yet retains much of the layout of the first edition.

Bergey's Manual of Systematic Bacteriology (Vol.1-5) 2nd Edition (2001-2012)

- The second edition is being published in 5 volumes.
- Volume 1 (2001)
 - The Archaea and the deeply branching and phototrophic Bacteria
 - Editor-in-Chief: George M. Garrity
 - Editors: David R. Boone and Richard W. Castenholz. 721 pp.
- Volume 2 (2005) divided into three books (Parts A, B & C) The *Proteobacteria*
 - Editor-in-Chief: George M. Garrity
 - Editors: Don J. Brenner, Noel R. Krieg and James T. Staley. 2816 pp.
- Volume 3 (2009)
 - The *Firmicutes*
 - Editors: Paul De Vos, George Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, Karl-Heinz Schleifer and William B. Whitman. 1450 pp.
- Volume 4 (2010)
 - The Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi and Gemmatimonadetes
 - Editors: Noel R. Krieg, James T. Staley, Brian Hedlund, Bruce J. Paster, Naomi Ward, Wolfgang Ludwig and William B. Whitman. 974 pp.
- Volume 5 (2012)
 - The *Actinobacteria*
 - Editors: Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha Trujillo, Kenichiro Suzuki, Wolfgang Ludwig and William B. Whitman. 1750 pp.

Bergey's Manual of Systematic Bacteriology (Vol.1-5) 2nd Edition (2001-2012)



Bergey's Manual of Systematic Bacteriology 2nd Edition, Volume 2 (Parts A, B & C) The Proteobacteria

- Volume 2 "The Proteobacteria." (2004). Don J. Brenner, Noel R. Krieg, James T. Staley (Volume Editors), and George M. Garrity (Editor-in-Chief) with contributions from 339 colleagues.
- Hardcover: 2816 pages
- The volume provides descriptions of more than 2000 species in 538 genera that are assigned to the phylum Proteobacteria.
- This volume is subdivided into three parts:
- A. Part A- The Introductory Essays (332 pgs, 76 figures, 37 tables).
- B. Part B- The Gammaproteobacteria (1136 pages, 222 figures, and 300 tables).
- c. Part C- The Alpha-, Beta-, Delta-, and Epsilonproteobacteria (1256 pages, 512 figures, and 371 tables).

Bergey's Manual of Systematic Bacteriology Volume 2 (Parts A, B & C) The Proteobacteria

Bergey's Manual Trust Home Page Online encyclopedia of Systematics of Archaea and Bacteria (BMSAB)

ALL ALL ALL

Published by John Wiley & Sons, Inc. in Association with Bergey's Manual Trust

About Bergey's Manual Trust

History of Bergey's Manual and the

Former members of the Board of

Photographs from Trust meetings

The Board of Trustees

Associate Members

The Bergey Award

The Bergey Medal

Trust

Trustees

History of Bergey's Manual and the Trust

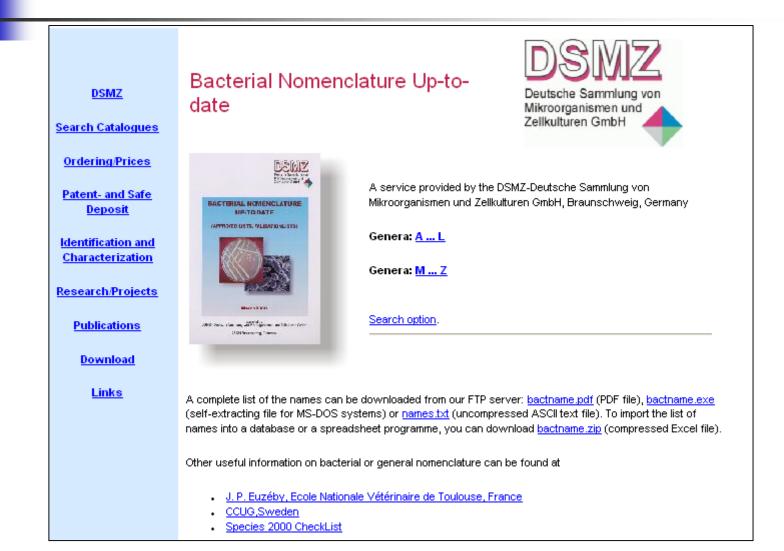
Early days

Bergey's Manual of Systematics of Archaea and Bacteria

The first edition of Bergey's Manual of Determinative Bacteriology was initiated by action of the Society of American Bacteriologists (now called the American Society for Microbiology) by appointment of an Editorial Board consisting of David H. Bergey (Chairman, pictured below), Francis C. Harrison, Robert S. Breed, Bernard W. Hammer and Frank M. Huntoon. This Board, under the auspices of the Society of American Bacteriologists who, then as now, published the Journal of Bacteriology as a service to science, brought the first edition of the Manual into print in 1923. The Board, with some changes in membership and Dr Bergey as Chairman, published a second edition of the Manual in 1925 and a third edition in 1930.

In 1934, during preparation of the fourth edition, Dr Bergey requested that the Society of American Bacteriologists make available the royalities paid to the Treasurer of the Society from the sale of the earlier editions to defray the expense of preparing the fourth edition for publication. The Society made such provision, but the use of the Society's fiscal machinery proved cumbersome, both to the Society and the Editorial Board. Subsequently, it was agreed by the Society and Dr Bergey that the Society would transfer to Dr Bergey all of its rights, title and interest in the Manual and that Dr Bergey would, in turn, create an educational trust to which all rights would be transferred.

Formation of the Trust


Dr Bergey was then the nominal owner of the Manual and he executed a Trust Indenture on January 2, 1926 decignating David H. Bergey, Pohert S. Breed and Everitti G. D. Murray as the initial trustees, and

Bergey's Manual Trust Home Page Online encyclopedia of Systematics of Archaea and Bacteria (BMSAB)

- Bergey's Manual Trust and John Wiley & Sons, Inc., are pleased to announce a new partnership to produce an online encyclopedia entitled Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB).
- This electronic work will provide:
- Up-to-date descriptions of the taxonomy, systematics, ecology, physiology and other biological properties of all named prokaryotic taxa.
- Release is anticipated in the fall of 2014.
- BMSAB will be available via Wiley Online Library.
- Individual volumes of BMSAB will also be made available in ebook format.
- Visit Bergey's Manual Trust at http://www.bergeys.org/formore information on the Trust and our other publications.

Bacterial nomenclature

German Collection of Microorganisms and Cell Cultures GmbH DSMZ

Euzéby website for Bacterial Standing Names

Up-to-date list of validly published names

(a key web source of validated species lists)

now LPSN-DSMZ's website (https://lpsn.dsmz.de).

Euzeby,2010

LPSN

List of Prokaryotic names with Standing in Nomenclature

Formerly List of Bacterial names with Standing in Nomenclature (LBSN)

J.P. EUZÉBY SBSV	Taxonomic categories and changes covered by the Rules of the Code
	• Genera and taxa above the rank of genus up to and including class: A-
Last full update:	C D-L M-R S-Z
January 08, 2008	• Taxa above the rank of genus up to and including class exclusively
Minor changes since	Genera exclusively
the last full update: January 10, 2008	• Genera of the domain (or empire) of Archaea (or Archaeobacteria) exclusively
URL: http://www.	• Genera of the domain (or empire) of Bacteria (or Eubacteria) exclusively
bacterio.net	• Names included in the Approved Lists of Bacterial Names
Author's e-mail	• Names validly published by announcement in Validation Lists
Introduction	• Basonyms, new combinations (comb. nov.), nomina nova (nom. nov.)
Search	Taxonomic categories and changes not covered by the Rules of the Code
Links	• Candidatus
Legal rights and	Taxa above the rank of class
disclaimers	• Lists of Changes in Taxonomic Opinion
Resource description	• NEWI Antigenic formulas of the Salmonella serovars, Kauffmann- White scheme (J.P. Euzéby & B. Barrett): (i) Introduction - (ii)
Acknowledgements	Kauffmann-White scheme - (iii) Alphabetic list of names given to serovars (serotypes) of Salmonella enterica subsp. enterica with their

file:///D/Documents%20and%20Settings/user/Desktop/L...mes%20(formerly%20List%20of%20Bacterial%20Names).htm (1 of 5)1997/01/01 11:31:33 ••

LPSN: The List of Prokaryotic Names with Standing in Nomenclature (http://www.bacterio.net)

Site founded in 1997 by

Jean P. Euzéby

LPSN List of prokaryotic names bacterio.net with standing in nomenclature

LPSN Home LPSN News	Google Custom Search	Genera and taxa above the rank of genus: A-C
About LPSN Contact	Sign up here for LPSN updates!	Genera and taxa above the rank of genus: D-L
Resource description		Genera and taxa above the rank of genus: M-R
All names A-C	Destroyer 29 Message 1 of Systematics of	Genera and taxa above the rank of genus: S-Z
D-L M-R	Bergey's Manual of Systematics of Archaea and Bacteria	Names validly published since 01 January 1998
s-z Classifications	Published by John Wiley & Sons, Inc. in association with Bergey's Manual Trust	Other categories and changes covered by the Rules
Support	Support LPSN	Candidatus
Search LPSN Google Custom Search Search	LPSN content is freely available to all, but takes considerable time, effort and expense to run. If you find LPSN useful, please support it at any level that you can - \$10, \$20, \$50, \$100, \$1000 any amount will be	Some prokaryotic names without standing in nomenclature
	greatly appreciated. Donate	Other categories and changes not covered by the Rules
Ribo:on	VISA 🚺 💷 🔤	Nomenclature
	· · · · · · · · · · · · · · · · · · ·	Collections
charles river	LPSN News	Miscellaneous
• 35 •	20 October 2017 - Names in Validation Lists 174 (IJSEM 67/3) have been added to LPSN.	
Please support LPSN!	5 October 2017 - Names in Validation Lists 173 (IJSEM 67/1) have been added to LPSN; a link to all the Validation Lists in IJSEM Online is now given below.	
	25 August 2017 - The names published in the February 2017 issue (67/2) of IJSEM have been added to LPSN.	
	9 July 2017 - The names published in the January 2017 issue (67/1) of IJSEM have been added to LPSN.	
	14 June 2017 - the names in Validation Lists 171 (IJSEM 66/9) and 172 (66/11) have been added to LPSN - this completes the 2016 updates.	

Euzeby,2017

List of Prokaryotic Names with Standing in Nomenclature (LPSN) Compiled, edited and curated by Prof. J.P. Euzéby

- LPSN is a database of bacterial names and prokaryotes names.
- It includes a comprehensive classification and taxonomy.
- Formerly "List of Bacterial names with Standing in Nomenclature (LBSN)".
- http://www.bacterio.cict.fr/

List of Prokaryotic names With Standing in Nomenclature

Note: From February 2020, LPSN was integrated into the DSMZ's Prokaryotic Nomenclature Up-to-date (PNU) database as an all-new service. LPSN-DSMZ's website (https://lpsn.dsmz.de).

Table 1. Bacterial Plant Pathogen Websites of Interest

Bacterial Nomenclature	Bacterial Nomenclature Up- to-date	<u>http://www.dsmz.de/</u> <u>bactnom/bactname.htm</u>
	List of Bacterial Names with Standing in Nomenclature	http://www.bacterio.cict.fr/
	Bergey's Manual of Systematic Bacteriology 2nd Edition – Taxonomic Outline of the Procaryotes	http://dx.doi.org/10.1007/ bergeysoutline200210

Catalogue of Life Species 2000 CheckList http://www.catalogueoflife.org/col/

pecies 2000	Spanish Chinese Russian Portuguese Dutch German Polish	Lithuanian Thai Vietnamese			
Browse Search		Search all names - Results f	for "xylella"		
Info 🔸	Records found: 4	Export search results Nev	w search	Records per p	age: 20 🔶 Update
	Name	Rank	Name status	Group	Source database
	<u>Xylella</u>	Genus		Bacteria	
	<u>Xylella</u> fastidiosa Wells et al., 1987	Species	accepted name	Bacteria	still s
	Xylella fastidiosa fastidiosa Wells et al., 1987	Infraspecific taxon	accepted name	Bacteria	SPITIS
	Xylella fastidiosa multiplex Schaad et al., 2009	Infraspecific taxon	accepted name	Bacteria	Set It Is
		Export search results New	w search		
	Annual Checklist Interface v1.9 r2126ab0 developed by Naturalis Biodiver Center. Please note, this site uses <u>cookies</u> . If you continue to use the site assume that you agree with this.				

Roskov Y, Kunze T, Orrell T, Abucay L, Paglinawan L, Culham A, et al., editors. Species 2000 & ITIS Catalogue of Life, 2014 Annual Checklist [DVD]. 2014; Naturalis, Leiden, the Netherlands: Species 2000.

Up-to-date list of validly published names EzBioCloud Database

EZBIOCIOUD DASHBOARD APPS TOOLS	RESOURCES HOW TO CITE ABOUT	HELP CENTER	SUPPORT	LICENSES	
Search EzBio	Cloud Database				
Featured services					
e	0		~ 7 _5°		
16S-based ID Identifying a bacterial isolate using 16S rRNA	Genome-based ID Identifying a bacterial isolate using genome		robiome Pi ne Taxonomic Pro		
*Do you need NGS service? Please contact us at info@chunlab.com	n				
100	ChunLab's guide for DIY microbiome sequencing using the Illumina iSeq 100 System is published	a			

What name should be used?

- Although the Code and the Standards govern the correct application and publication of names, there is no authority governing which classification and adherent nomenclature should be used.
- Sometimes, a lack of consensus about which classification (former or new) is most appropriate can lead to two or more legitimate names being used in the literature for the same organism.

What name should be used? Agrobacterium spp.

- The reclassification of *Agrobacterium* spp. into *Rhizobium* is a case in point (Young *et al.*,2001b).
- The authors proposed that strains of Agrobacterium spp. and Rhizobium spp. should be included in a single genus for which the name Rhizobium had priority.
- There is little use, as yet, made of the new nomenclature.
- This is probably because Agrobacterium tumefaciens is a familiar name in many disciplines, in addition to a lack of agreement with the newly proposed classification (Farrand et al., 2003).
- In case of *A. vitis*, it was proposed as *Rhizobium vitis* (Young *et al.*,2001). More recently, it was transferred to the genus *Allorizobium* (Mousavi *et al.*,2014 and 2015).

Agrobacterium spp. with a validly published and correct name

	Name	Host plant disease
1	<i>Agrobacterium arsenijevicii</i> Kuzmanović et al. 2019	crown gall tumors on raspberry and cherry plum
2	Agrobacterium cavarae Flores-Felix et al. 2020	galls in grapevines
3	<i>Agrobacterium fabacearum</i> Delamuta et al. 2020	nodules of plants of the family Fabaceae
4	Agrobacterium larrymoorei Bouzar and Jones 2001	aerial tumours of <i>Ficus</i> <i>benjamina</i>
6	<i>Agrobacterium radiobacter</i> (ex. <i>Agrobacterium tumefaciens</i>) (Beijerinck and van Delden 1902) Conn 1942 (Approved Lists 1980)	
8	Agrobacterium rosae Kuzmanović et al. 2019	galls on different agricultural crops
9	<i>Agrobacterium rubi</i> (Hildebrand 1940) Starr and Weiss 1943 (Approved Lists 1980)	galls on blackberry

In case of *A. vitis*, it was transferred to the genus *Allorizobium* as *Allorhizobium vitis* (=*A. vitis*) (Mousavi *et al.*,2014 and 2015).

What name should be used? *Erwinia* spp.

- In contrast, there is reasonably good acceptance of most if not all the new genera derived from *Erwinia*.
- Unfortunately there is no easy rule to help decide which valid name to use.
- Individual authors must critically examine the taxonomic literature to decide which classification is most appropriate and suitable for their needs.

What name should be used? Permits of some office to use the synonyms of bacterial names

- In many instances the old/common names are still used by growers, but scientists have split the bacterial genera into numerous species and totally renamed others.
- This makes it difficult to understand exactly what we are trying to identify and regulate; and may also pose a problem when code enforcement is required.
- Thus, a new list of bacterial plant pathogens, synonyms, common names was generated.
- I believe this should help to clarify the confusion of our bacterial nomenclature that has evolved over the last several decades.

What name should be used? Nomenclature of Plant Pathogenic Bacteria

Original Name	Synonyms
Corynebacterium fascians	Rhodococcus fascians
<i>Corynebacterium michiganense</i> subsp. <i>insidiosum</i>	Clavibacter insidiosus
Corynebacterium michiganense	Clavibacter michiganensis
<i>Corynebacterium michiganense</i> subsp. <i>sepedonicum</i>	<i>Clavibacter sepedonicus</i>
Erwinia carotovora	Pectobacterium carotovorum
Erwinia nigrifluens	Brenneria nigrifluens
Pseudomonas caryophylli	Burkholderia caryophylli
Pseudomonas solanacearum	Ralstonia solanacearum

Culture Collections of Prokaryotes Reference cultures

- When isolates are designated as reference strain (especially when they function as the type strain for a certain species or pathovar they should be deposited in one of the official culture collections such as:
- ATCC: American Type Culture Collection, Rockville MD, USA.
- CNBP: Collection National de Bactéries Phytopathogènes Angers, France.
- ICMP: International Collection of Micro-organisms from Plants, DSIR Auckland, New Zealand.
- NCPPB: National Culture Collection Plant Pathogenic Bacteria CSL, York, UK.
- PD: Culture Collection Plant Protection Service, Wageningen, The Netherlands.

Culture Collections of Prokaryotes Reference cultures

- ACM: Australian Collection of Microorganisms.
- AMRC: FAO-WHO International Reference Centre for Animal Mycoplasmas, Institute for Medical Microbiology, University of Aarhus, Aarhus, Denmark.
- BKM: All-Union Collection of Microorganisms, Institute of Microbiology, USSR Academy of Sciences, Moscow, USSR.
- BKMW: Culture Collection, Institute of Microbiology, USSR Academy of Sciences, Moscow, USSR.
- CIP: Collection of the Institute Pasteur, Paris, France.
- DSM: Deutsche Sammlung von Mikroorganismen, Schnittspahnstrasse (in English: German Collection of Microorganisms and Cell Cultures), Darmstadt, Federal Republic of Germany.
- KCTC: Korean Collection for Type Cultures.
- NCCB: Netherlands Culture Collection of Bacteria.
- PTCC: Persian Type Culture Collection, Iran.
- ACCC: Agricultural Culture Collection of China.
- **ITCC:** Indian Type Culture Collection.

Culture Collections of Prokaryotes Reference cultures

- IPV: Instituto de Patologia Vegetale, Milan, Italy.
- LIA: Museum of Cultures, Leningrad Research Institute of Antibiotics, 23 Ogorodnikov Prospect, Leningrad L-20, USSR.
- NCMB: National Collection of Marine Bacteria, Torry Research Station, Aberdeen, Scotland, UK.
- NIHJ: National Institute of Health, Tokyo, Japan.
- UQM: Culture Collection, Department of Microbiology, University of Queensland, Brisbane, Australia.
- WINDSOR: Culture Collection, University of Windsor, Windsor, Ontario, Canada.

National Collection of Plant Pathogenic Bacteria

Search NCPPB catalogue	• HOME
* All wilcard searches are case sensitive Collection No: (if you know the NCPPB collection no. of the isolate)	• Services
Pathogen (All pathogens) OR name:	• Search NCPPB
Host: (All pathogens)	• History & Aims
Culture This may refer to any previous reference this culture may have had, eg 'B6'.	• Staff
Order NCPPB No. Catalogue name results by: 	Price List
Search Clear	• Order Strains
	• News
	• Contact Us

NCPPB

CFBP French Collection for Plant-Pathogenic Bacteria

	2. The collection		OST 873 practical workshop - Sept 24 th 2009
	Created in 1973	On the basis of an important collection of bacteria iso	lated by researchers of the lab
ALIMENTATION AGRICULTURE ENVIRONNEMENT		5500 strains 383 type strains for species subspecies or pathovars 58 genera 435 species, subspecies and pathovars Contributors (and strains) from the entire world servation of biodiversity, and associated informations w acces for international scientific community research development teaching identification	s Quarantine Dual use
	ISO 9001:2000	Since novembre 2008 To garantee quality of service	BUREAU VERITAS

Portier,2009

CFBP

French Collection for Plant-Pathogenic Bacteria Strain ordering

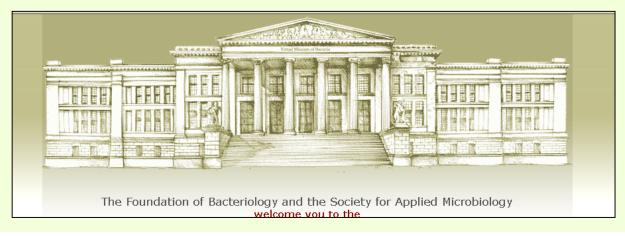
	5. Practical aspects	COST 873 practical workshop - Sept 24th 2009
	Strain ordering	
	Contine catalogue Conter strains Revelop Researching	Your company (effections) Though you to fill every blank
	C Reviving freeze-dried becteria C Strain descel	Invoice address VAT sumber (only for III member constrict)
	- Select strains in the catalogue	Tel. Fex
	- Fill the order-letter	Delivery address to : CFDP Tel. UMR ps Fax 4, Tre 4
	Requested informations:	49071 E Contact : Mana : Ten :
	-Institution -Contact	7041 Fas: e-canit :
N ENT	-Strains -Objectives and research programs	References Nº CFRP Ex. Decementa alter EX. 597.5 Ex. Decementa alter
ALIMENTATION 'Ure Environnemi	- Download and sign the MTA in 2 copies	
NT NO	MTA: Material Transfert Agreement	Objectives of this strains order:
REN	Biological Marvetal Transfer Agrossment: General coaditions for the Transfer of Material French collection of Plant Pathogenic Bacteria, CFBP	
AL E	Prezublie The French collection of Plant Pathopmic Bacteria (UMR 17, Pathologie Végétale, INRA, Centre d' Aupers, 42, eus George Merel, BP	Fees
ALIM Agriculture Env	Specify the conditions of strain ordering	Represent participation for strain conservation
AG	Quarantine bacteria / Import permit : Depending of the regulations of your country, an import permit or a letter of authority (EU) may be requested by authorities and have to be provided with your order.	- Private Companies: 50 Euros HT per vial - Non-profit institutions: 30 Euros HT per vial Packaging : 10 euros HT (up to 30 vials) Postage (tracking mail) : * France : 10 euros HT
	1 copy of the MTA signed back by CFBP is joined with the strains	* European Union : 15 euros HT * Rest of the world : 25 euros HT
	The invoice is joined with the strains	

HT=Hors taxes (not including)

Portier,2009

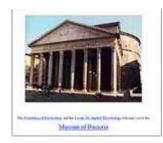
DSMZ Microbial identification services Prices for services and techniques

- Production of biomass for the different techniques »
- Analysis of the cellular fatty acid composition »
- Analysis of respiratory quinones »
- Analysis of polar lipids »
- Analysis of mycolic acids »
- Analysis of DAP (2,6-diaminopimelic acid) »
- Analysis of peptidoglycan structure »
- Analysis of whole cell sugars »
- DNA base composition by HPLC »
- DNA DNA hybridization »
- Ribotyping »
- MALDI-TOF »
- Partial 16S rDNA sequence analysis »
- Complete 16S rDNA sequence analysis »
- Full phylogenetic study by complete 16S rDNA sequence analysis »
- Antibiotic susceptibility testing »


Bacteria and Archaea	Price
General identification of bacteria	450 €
Pre-identification (cost related to complexity)	Inquire
Fee for purification of a culture	from 100 €
Phenotypic characterization	Inquire
Production of biomass for the different techniques	300 - 600 €
Analysis of the cellular fatty acid composition	85 €
Analysis of respiratory quinones	275€
Analysis of polar lipids	275€
Analysis of mycolic acids	275€
Analysis of DAP (2,6-diaminopimelic acid)	125€
Analysis of peptidoglycan structure	600€
Analysis of whole cell sugars	160€
DNA base composition by HPLC	240 €
Preparation of DNA for DNA - DNA hybridization	250 €
DNA - DNA hybridization	125€
Ribotyping	320€
MALDI-TOF	125€
Partial 16S rDNA sequence analysis	220 €
Complete 16S rDNA sequence analysis	425€
Full phylogenetic study by complete 16S rDNA sequence analysis	800 €
Antibiotic susceptibility testing	Inquire

Material transfer DNA from dead bacterial cells

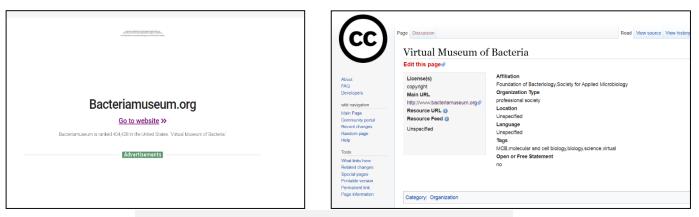
- To send DNA from dead bacterial cells no permits are required.
- To prepare heat-killed cells, simply spread the bacteria from a plate onto some type of absorbant paper (like filter paper or tissue paper) and place the paper at 55°C in a dry incubator for at least 10 min.
- This will kill the bacteria, but will not damage the DNA.
- Fold up the filter paper and place each sample in its own small envelope or plastic bag. They can all be mailed together in a larger package.
- You can then send the filter paper as a "non-hazarous DNA sample" through the regular mail.


Virtual Museum of Bacteria The Foundation of Bacteriology and the Society for Applied Microbiology

- This site (http://bacteriamuseum.org/) brings together many links on bacteria, bacteriology, and related topics available on the web.
- It also provides crystal-clear information about many aspects of bacteria.

Virtual Museum of Bacteria The Foundation of Bacteriology and the Society for Applied Microbiology

- We provide many links to pictures, video's, and explanatory text.
- By browsing through our links you are presented with a synopsis of the diverse world of bacteria,
- 1. you can learn that not all bacteria are harmful,
- 2. how they are used in industry, that they belong to the oldest living creatures on Earth, and
- 3. much more.



Museum of Bacteria Information on bacteria

Wassenaar,2007

Virtual Museum of Bacteria The Foundation of Bacteriology and the Society for Applied Microbiology

 A thoughtful collection of species-based links and facts about pathogenic bacteria, bacteriophages, origin of life, food/water safety, antibiotics and vaccination.

Asks for the username and password

Sign in			
	ner.farkas.de tion to this site is not private		
Username			
Password			
		Sign in	Cancel

Website address: http://www.bacteriamuseum.org

3. Classification

Classifications group similar things together

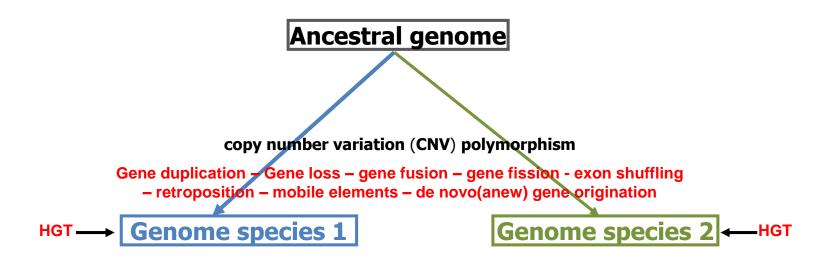
Classification systems Prokaryote (bacteria and archaea) Classification

Two general ways to classify based on:

- Overall similarity phenetic
- Evolutionary relationships phylogenetic Therefore:
- Taxonomy is traditionally phenotypic.
- Phylogeny is mainly genetic.

The goal of classification

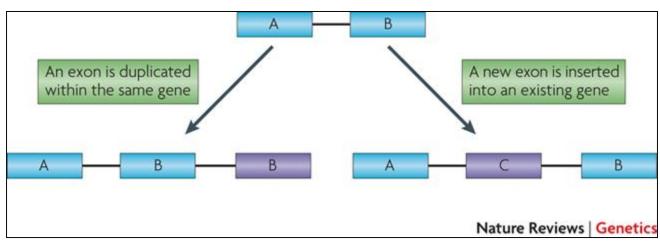
- The goal of classification is to determine genetic similarity.
- As a consequence of the sequencing of organism genomes, the science of classification is very much in flux (classifications are changing often) as phenotype-based classification is augmented by genotype-based classification.
- All is not happy even with genotype-based classification, however, since horizontal gene transfer greatly complicates estimations of genetic similarity, with different parts of genomes displaying different levels of genetic similarity between organisms.


Classification approaches

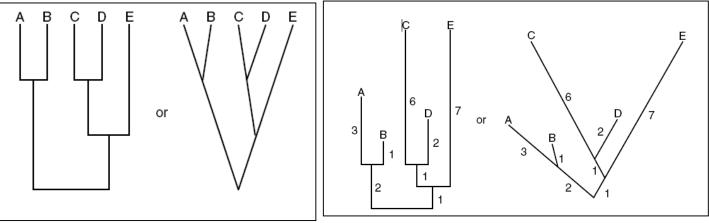
Subjective	Objective
Phenetic classification	Phylogenetic classification
Distinguish among pathogens	Testable hypotheses
Few characters tested	Polyphasic
Monothetic (the use of a single criterion) - special purpose classifications	Polythetic (using several or all possible criteria) classifications
Monophyletic	Polyphyletic
Criteria change depending on species	Criteria universal for all bacteria

Monophyletic: A group consisting of a common ancestor +all descendants of that common ancestor.

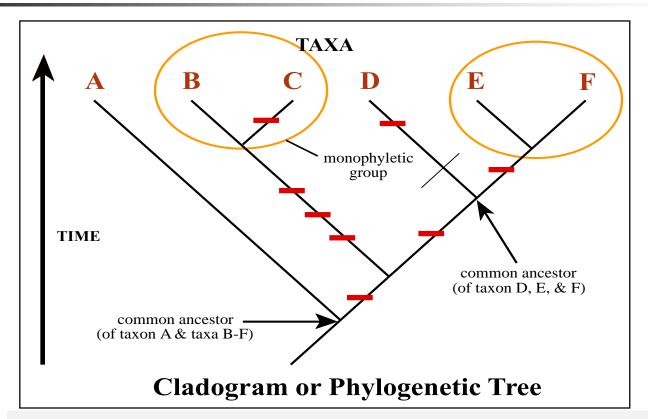
Classification approaches


- **Phylogeny** is the study of evolutionary relationships.
- Phylogenetic analysis is the means of inferring evolutionary relationships.

brigitte.boeckmann@isb-sib.ch

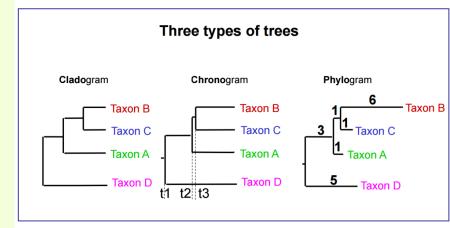

Classification approaches Ancestral genome Exon shuffling

- Exon shuffling (rearrengment) is a molecular mechanism for the formation of new genes.
- It is a process through which two or more exons from different genes can be brought together ectopically (out of place), or the same exon can be duplicated, to create a new exon-intron structure.


Classification approaches Phylogenetic trees

- Cladogram: branching diagram without branch length estimates.
- Phylogram or phylogenetic tree: branching diagram with branch length estimates.

- The branch length in phylogram represents the number of character changes.
- Molecular clock: The molecular clock hypothesis states that DNA and protein sequences evolve at a rate that is relatively constant over time and among different organisms.


Classification approaches Cladogram or phylogenetic trees Monophyletic group

Both **phylogenetic trees** and **cladograms** help show the relationships between different organisms, but only **phylogenetic trees** have branches that represent evolutionary time and amount of change. **Monophyletic:** A group consisting of a common ancestor+all descendants of that common ancestor.

Classification approaches Three types of trees Cladogram, phylogram and chronogram

- Chronogram (Time calibrated phylogeny): represents evolutionary time through its branch lengths.
- 2. Cladogram: branching diagram without branch length estimates.
- Phylogram or phylogenetic tree: branching diagram with branch length estimates.

Characteristics used in taxonomy

- 1. Phenotypic characteristics: Morphology, physiology, Biochemical; Numerical taxonomy.
- 2. The first genomic parameters: G+C mol% content and whole-genome hybridizations (DDH).
- 3. Chemotaxonomy: Numerous techniques revealing relevant chemical components.
- 4. Phylogenetic indicators: 16S rRNA,16S-23S rDNA intergenic spaces (ITS),...

Characteristics used in taxonomy Characters evaluated

Phenotypic

- Gram reaction
- Carbon utilization
- Fatty acid production
- Ice nucleation
- Flagella
- Phage sensitivity
- Antibody specificity
- Pathogenicity

Nucleic Acid Based

- ANI genome sequence
- MLSA
- Rep-PCR
- RAPDS
- AFLP
- RFLP
- ITS-PCR
- DDH
- ARDRA
- 16S rDNA sequencing

Average Nucleotide Identity (ANI) values between your isolate and type strains. MLSA: Multilocus sequence analysis.

Bull,2013

Classification systems Classification types

- Historically, there have been two main classification schemes used to identify living organisms:
- 1. Artificial, and
- 2. Natural classification.

Classification systems Phylogenetic classification

- T present there are three types of classifications.
- They are:
- 1. artificial,
- 2. natural, and
- 3. phylogenetic.

Woese, C.R., Kandler, O. and M.L. Wheels. Towards a natural system of organisms: proposal for the domains of Archaea, Bacteria, and Eucarya. *Proc. Natl. Acad. Sci.* 87, 4576-4579. (1990).

Classification systems 1. Artificial classification

- 1. Only a few morphological characters are considered
- 2. Members of different groups are usually not similar in hereditary pattern
- 3. Stable classification
- 4. Provides only limited information
- 5. Cannot add new work
- 6. Difficult for identifying a particular species or genera
- 7. Not related phylogenetically.

Phenetic Classification Artificial classification Two kingdoms: Plant and Animal

- Before scientists had a clear understanding of the nature of microbes the biological world was classified into two kingdoms:
- 1. Plant
- 2. Animal
- Bacteria were placed into plant kingdom(Plantae).
- Clearly, this scheme was inadequate.

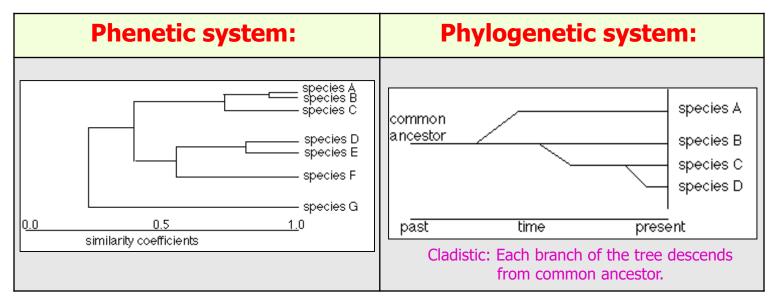
Classification systems 2. Natural classification

- It is based on the natural affinities among the organisms and considers not only the external features but also the internal one (phenotypes and genotypes).
- Almost all the characters are considered
- Members of different groups are mostly similar in hereditary pattern
- May change with advancement in knowledge
- Provides plenty of useful information
- Recent advancement in the field can be added
- Closely related to phylogenetically.

Natural system of classification is based on a large number of characters. In this system, the genus and accompanying higher taxa consist of all the species that have evolved from one common ancestral species.

Classification systems Phylogenetic classification

- A third type of classifications is phylogenetic classification.
- In phylogenetic system of classification reflects possible evolutionary relationships based on ancestry and descent.
- 1. Based on many phenotyptic and genotypic characters with emphasis evolutionary relationships.
- 2. Characters chosen have evolutionary significance from primitive to evolved conditions.
- 3. Gives some idea on origin and evolution of different taxa.
- It generates trees called cladograms, which are groups of organisms that include an ancestor species and its descendants.


Classification systems Phenetic system vs. Phylogenetic system

Two very different ways to construct a taxonomy:

Phenetic system	Phylogenetic system
 Groups organisms based on	 Groups organisms based on
mutual similarity of	shared evolutionary heritage. Example: Mycoplasma (no wall) and
phenotypic characteristics. May or may not correctly	Bacillus (walled Gram+ rods)
match evolutionary grouping. Example: Group (motile) organisms in	are not obviously similar,
one group, non-motile	would not be grouped
organisms in another group. This is useful, but does it	together phenetically. But evolutionarily they are
reflect underlying	similar, more so than either to
evolutionary ancestry?	Gram-ve organisms.

Classification systems Phenetic system vs. Phylogenetic system

Two very different ways to construct a taxonomy:

Branches show the path of transmission of genetic information from one generation to the next. Branch lengths indicate genetic change i.e. the longer the branch, the more genetic change (or divergence) has occurred. Typically we measure the extent of genetic change by estimating the average number of nucleotide or protein substitutions per site.

Prokaryotes The History

- 1735 Plant and Animal Kingdoms.
- 1857 Bacteria and fungi put in the Plant Kingdom.
- 1866 Kingdom Protista proposed for bacteria, protozoa, algae, and fungi.
- 1937 Prokaryote introduced for cells "without a nucleus".
- 1961 **Prokaryote** defined as cells in which nucleoplasm is not surrounded by a nuclear membrane.
- 1959 Kingdom Fungi.
- 1968 Kingdom Prokaryotae proposed (Murray, 1968).
- 1978 Two types of prokaryotic cells found (Woese, 1977).

Prokaryotes

Most known prokaryotes are bacteria

- The name bacteria was once synonymous with "prokaryotes" but it now applies to just one of the two distinct prokaryotic domains.
- However, most known prokaryotes are bacteria.
- Every nutritional and metabolic mode is represented among the thousands of species of bacteria.
- The major bacterial taxa are now accorded kingdom status by most prokaryotic systematists.

Phenetic Classification Natural classification

Five-Kingdom System of Biological Classification proposed in 1969 by Robert Whitaker.

An American plant ecologist December, 27 - October 20, 1980 (aged 59).

Phenetic Classification Five-kingdom classification system Natural classification

Proposed in 1969 by Robert Whittaker.

- Whittaker's system of classification is based on:
- 1. cell type (prokaryotic or eukaryotic/true nucleus);
- 2. cell wall (present or absent);
- 3. mode of nutrition (absorptive or ingestive);
- 4. Nutritional class (photo/chemo/heterotrophic);
- 5. body organization (uni- or multi-cellular).

The heterotrophic bacteria can be parasitic or saprophytic. The autotrophic bacteria can be chemosynthetic or photosynthetic.

Phenetic Classification Five-kingdom classification system Natural classification

- Whittaker's classification scheme recognizes five kingdoms:
- 1. Monera,
- 2. Protista,
- 3. Fungi,
- 4. Plantae, and
- 5. Animalia.

Phenetic Classification

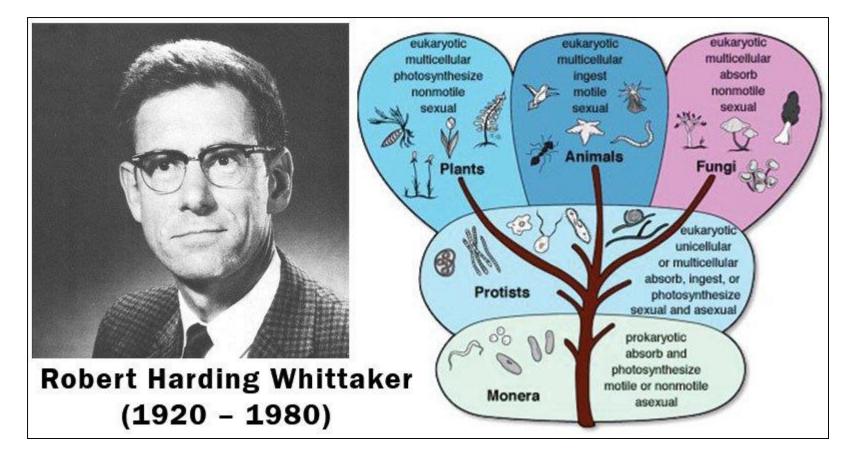
The five-kingdom system, proposed in 1969 by Whittaker Monera (bacteria and prokaryotes)

- Monera are the most primitive of organisms.
- Bacteria are classified in the Monera kingdom.
- Later, the Bacteria were classified under Kingdom Prokaryotae (aka Monera).
- And prokaryotes were considered as oldest living structures on the earth.

Phenetic Classification Five-kingdom classification system Natural classification

- 1. Kingdom Procaryotae (Monera): Oldest known cells. Lived over 3.5 billion years ago. Lack a nucleus and membrane bound organelles.
- The other four kingdoms are eucaryotes:
- Have a true nucleus and membrane bound organelles.
- 2. Kingdom Protista: Mostly unicellular, lack tissue organization. Most have flagella during life.
- 3. Kingdom Fungi: May be unicellular (yeasts) or multicellular (molds). Many are saprotrophs.
- 4. Kingdom Plantae: Multicellular, photosynthetic.
- 5. Kingdom Animalia: Multicellular, heterotrophs that ingest food through a mouth or oral cavity.

Phenetic Classification Five-kingdom classification system

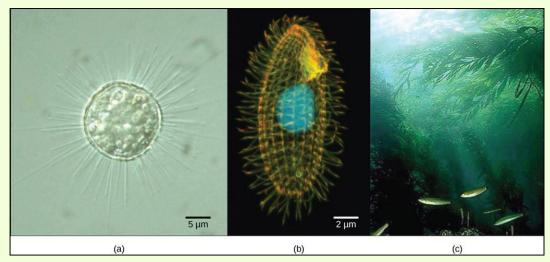

Table 8.1 Properties of the five kingdoms

Kingdom	Monera	Protista	Fungi	Plantae	Animalia
Cell type	Prokaryotic	Eukaryotic	Eukaryotic	Eukaryotic	Eukaryotic
Cell organization	unicellular	unicellular	Multicellular and unicellular	Multicellular	Multicellular
Cell Wall	Present in most	Present in some absent in others	Present	Present	Absent
Nutritional Class	Phototrophic, heterotrophicor chemoautotrophic	Heterotrophic and phototrophic	Heterotrophic	Phototrophic	Heterotrophic
Mode of nutrition	Absorptive	Absorptive or ingestive	Absorptive	Mostly Absorptive	Mostly ingestive

All bacteria and possibly blue-green algae are "prokaryotic" organisms, lacking a nuclear membrane.

BrainKart.com; BioNinjas

Phenetic Classification Five-kingdom classification system Natural classification


Microbe Notes

Phenetic Classification

The five-kingdom system, proposed in 1969 by Whittaker

Protist varieties:

 Protists range from the microscopic, single-celled (a) *Acanthocystis turfacea* and the (b) ciliate *Tetrahymena thermophila*, both visualized here using light microscopy, to the enormous, multicellular (c) kelps (Chromalveolata) that extend for hundreds of feet in underwater "forests.

Boundless.com

Phylogenetic Classification His results were the first to prove that all life on earth was related

Three domain of life proposed in 1977 by Carl Woese and introduced by Woese *et al.*, in 1990.

Carl Woese (pronounced woes) was one of the most significant biologists of the 20th century (July 15, 1928 – died aged 84. December 30, 2012).

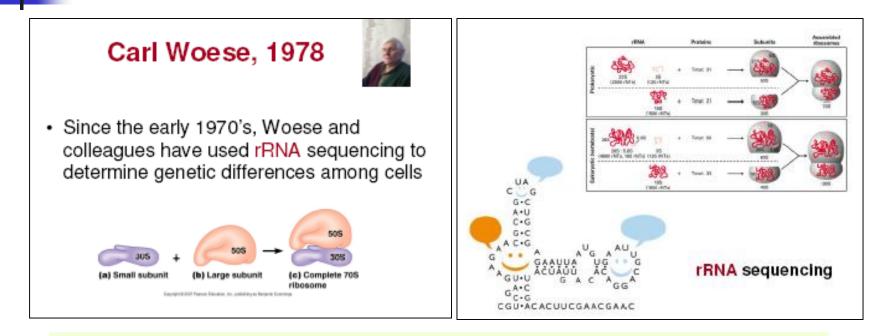
The process of revisions in the Carl Woese classification scheme A glance

Carl Woese: from scientific dissident to textbook orthodoxy

- In 1977, Carl Woese proposed that Archaea are different from bacteria and constitute a new super-kingdom Archaebacteria.
- By 1990 Woese adopted the term 'domain' for the three new branches of life and shortened the name Archaebacteria to Archaea.
- 20 years later became mainstream science (early 1990s) archaea became widely accepted by microbiologists as a third domain of life.
- And 30 years later (2007) became textbook orthodoxy
- In 2003 Woese was awarded the Crafoord Prize.

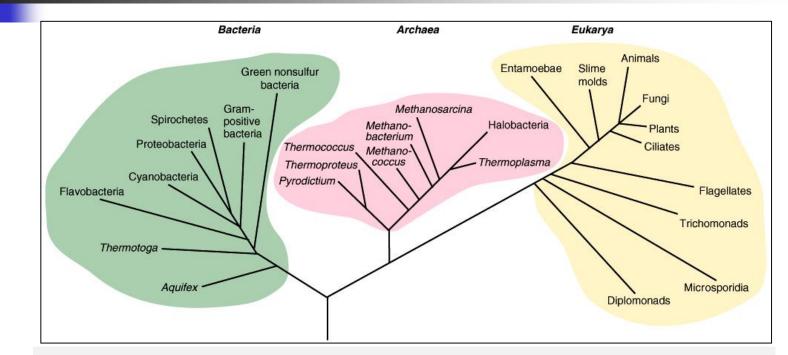
Phylogenetic Classification The Three Domain System The famous American microbiologist and physicist

- Because of this vast difference in genetic makeup, Carl Woese,1977 proposed that life be divided into three domains:
- 1. Eukaryota,
- 2. Eubacteria, and
- 3. Archaebacteria.


Cluster of halobacterium (archaea)

- He later decided that the term Archaebacteria was a misnomer (a name wrongly or unsuitably applied to a person or an object and shortened it to Archaea).
- The three domains are shown that each group is very different from the others.

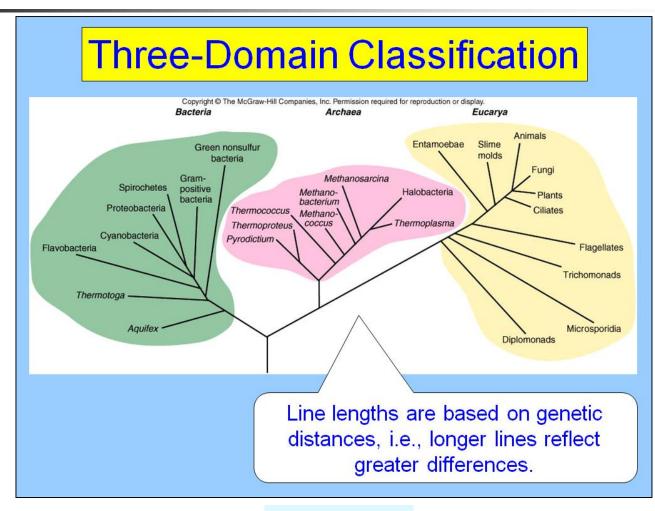
Phylogenetic Classification Three-domain classification system Woese *et al.*,1977


- Carl Woese (pronounced woes) was one of the most significant biologists of the 20th century (July 15, 1928 – died aged 84. December 30, 2012).
- 1. Woese was famous for defining the Archaea (a new domain or kingdom of life) in 1977.
- 2. He was also the originator of the RNA world hypothesis in 1977, although not by that name.
- The scientific community was understandably shocked in the late 1970s by the discovery of an entirely new group of organisms - the Archaea.

Phylogenetic Classification The Three Domain System 16S/18S rRNAs

However, 40 years after his legendary classification, it becomes more and more apparent that the three-domain system is not a system carved in stone but in need of revision. In 2011, Woese told Lab Times that "serious considerations are long overdue" (LT 6-2011, p. 36-9).

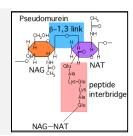
Phylogenetic Classification Three-domain classification system Carl Woese-Late 1970's & early 1980's

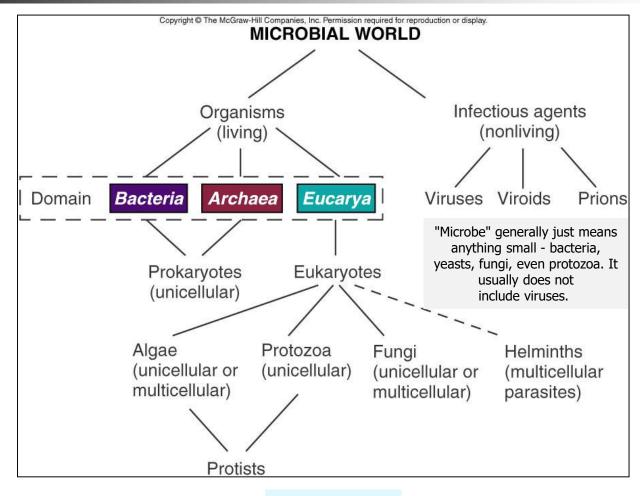


A second group (eukaryotes) is defined by the 18S rRNAs of the eukaryotic cytoplasm-animal, plant, fungal, and slime mold (Woese and Fox,1997). In 1987, Carl Woese divided the Eubacteria into 11 divisions (phyla) based on 16S ribosomal RNA (SSU) sequences, which with several additions are still used today.

Powers,2011;..

Phylogenetic Classification Three-domain classification system




Abedon,2011

Phylogenetic Classification The three domain system 16S/18S rRNAs

- The three domain system, proposed by Woese,1977.
- The three domains are:
- 1. Archaea (archaebacteria): Includes all prokaryotes lacking peptidoglycan in their cell walls and living in extreme environments).
- 2. **Bacteria** (eubacteria): Having peptidoglycan and includes prokaryotes (pathogenic and non-pathogenic).
- 3. **Eukarya** (eukaryotes): Includes the 4 kingdoms of Animals, plants, fungi, protists.

Archaea cell walls are made up of pseudomurien, means they lack peptidoglycan but resembles the same chemistry and function.

Seelke,2010

- rRNA was chosen for phylogenetic classification because all cells have it.
- It functions the same in all cells.
- Its nitrogen base sequences is moderately conserved generation to generation.
- And, this enabled Woese to separate organisms into 3 cell types, forming a phylogenetic classification scheme.
- They proposed elevating the 3 cell types to domains (above kingdoms).

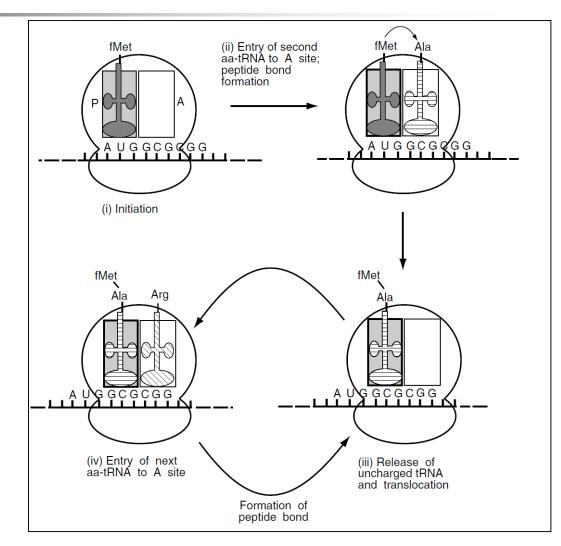
- The Three Domain System is an evolutionary model of classification based on differences in the sequences of nucleotides in the:
- This classification system divides the life based on the differences in the:
- 1. 16S ribosomal RNA (rRNA) structure,
- 2. cell's membrane lipid structure, and
- 3. its sensitivity to antibiotics.
- This system proposes that a common ancestor cell ("Cenancestor") gave rise to three different cell types, each representing a domain.

In 2006, Cavalier-Smith proposed that the last common ancestor to all terrestrial organisms was a non-flagellate negibacterium with two membranes. 393

Comparison of the main characteristics of three domains

Characteristic	Archaea	Eucarya	Bacteria
Ribosomes	70S	80S	70S
Initiator tRNA	Methionine	Methionine	Formylmethionine
Introns in tRNA	Yes	Yes	No
Membrane lipids	Ether-linked	Ester-linked	Ester-linked
Sensitivity to:			
Choramphenicol	NO	NO	Yes
Kanamycin	NO	NO	Yes
Streptomycin	NO	NO	Yes
Rifampicin	NO	NO	Yes

-Ether (ROR') linked lipids as opposed to ester linked (RCOOR') lipids. -Introns are non-coding sequences.


Mechanism of protein synthesis tRNA^{fMet} as initiator tRNA in bacteria

- In bacteria, the initiation codon is recognized by a specific tRNA molecule, tRNA^{fMet}.
- After this tRNA molecule is charged with methionine, the amino acid is modified, to N-formylmethionine.
- Aminoacylated tRNA molecules normally bind to a site on the ribosome known as the A (Acceptor) site, while their anticodon region pairs with the mRNA.
- Only after peptide bond formation is the tRNA able to move to a second site on the ribosome, the P (Peptide) site.
- The fMet-tRNA^{fMet} (i.e. the tRNA^{fMet} charged with formylmethionine) is unique in being able to enter the P site directly.

Mechanism of protein synthesis tRNA^{fMet} as initiator tRNA in bacteria

After this tRNA molecule is charged with methionine, the amino acid is modified, to Nformylmethionine.

- A (Acceptor) site,
- P (Peptide) site.

Dale and Park,2004

Phylogenetic Classification

The Two Empire System Cavalier-Smith megaclassification of prokaryotes (life).

Thomas Cavalier-Smith(October 21, 1942-19 March 2021 (aged 78) was a Professor of Evolutionary Biology in the Department of Zoology, at the University of Oxford.

He is well known for his series of classification system of all organisms.

The process of revisions in the Cavalier-Smith's classification scheme A glance

- His classification has been a major foundation in modern taxonomy, particularly with revisions and reorganizations of kingdoms and phyla.
- In 1981, he proposed that by completely revising Robert Whittaker's Five Kingdom system, there could be nine kingdoms (instead of 5).
- In 1993, he revised his system particularly in the light of the general acceptance of Archaebacteria as separate group from Bacteria.
- By 1998 and 2004 Cavalier-Smith had reduced the total number of Kingdom from eight to six.

Rooting the tree of life

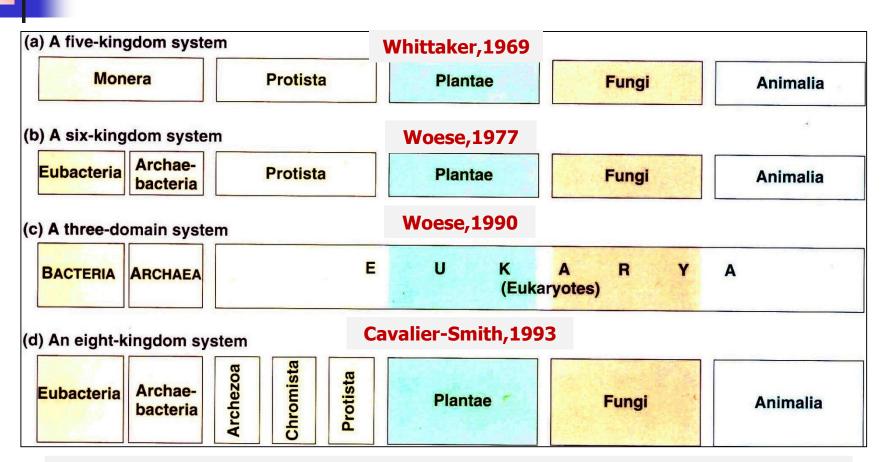
 In 2006, Cavalier-Smith proposed that the last universal common ancestor to all life was a non-flagellate negibacterium with two membranes. Summary of the sequence from the two-kingdom system up to Cavalier-Smith's six-kingdom system

- In 1866, Ernst Haeckel proposed the addition of a third kingdom- Protista.
- In 1925, Edouard Chatton recognized the distinction between prokaryotes and eukaryotes and proposed a two empire system.
- In 1938, Herbert Copeland incorporated prokaryotic cells into a fourth kingdom- Monera.
- In 1969, Robert Whittaker proposed a five kingdom system, which included a kingdom for Fungi.
- In 1977, Carl Woese identified differences in prokaryotes and in 1990 proposed the currently recognized three domain system.

BioNinja

Summary of the sequence from the two-kingdom system up to Cavalier-Smith's six-kingdom system

Linnaeus 1735	Haeckel 1866	Chatoon 1925	Copeland 1938	Whittaker 1969	Woese et al. 1977	Woese et al. 1990	Cavalier- Smith 2004
2 kingdoms	3 kingdoms	2 empires	4 kingdoms	5 kingdoms	6 kingdoms	6 kingdoms	6 kingdom
	Protista	Prokaryota	Monera	Monera	Eubacteria	Bacteria	Bacteria
Vegetabila	Plantae	Euokaryota	Protista	Protista	Archaebacteria	Archaea	Protozoa
Animalia	Animalia		Plantae	Fungi	Protista	Protista	Chromista
			Animalia	Plantae	Fungi	Fungi	Fungi
				Animalia	Plantae	Plantae	Plantae
					Animalia	Animalia	Animalia


The word 'procariotique' was independently coined in 1925 by Edouard Chatton for cyanobacteria and all other bacteria including archaebacteria proposed by Woese *et al.*,1997.

Wikipedia,2011;..

Summary of the sequence from the two-kingdom system up to Cavalier-Smith's six-kingdom system

Whittaker 1969	Woese et al. 1977	Woese et al. 1990	Cavalier-Smith 1993	Cavalier-Smith, 1998 2004	
Kingdoms	Domains Eubacteria, Archaebacteria, Eukaryota	Domains Bacteria, Archaea, Eukarya	Empire Prokaryota and Eukaryota	Empire Prokaryota and Eukaryota	
5 kingdoms	6 kingdoms	6 kingdoms	8 kingdoms	6 kingdom	
Monera	Eubacteria	Bacteria	Eubacteria	Bacteria	
Protista	Archaebacteria (ancient bacteria)	Archaea (he discovered third domain of life)	Archaebacteria	Protozoa	
Fungi	Protista	Protista	Archezoa	Chromista (he creates a new kingdom)	
Plantae	Fungi	Fungi	Protozoa	Fungi	
Animalia	Plantae	Plantae	Chromista	Plantae	
	Animalia	Animalia	Plantae	Animalia	
			Fungi		
			Animalia		

Summary of the sequence from the fivekingdom (whittaker, 1969) system up to Cavalier-Smith's eight-kingdom system (1993)

Archezoa such as Archamoebae have been developed from mitochondriate ancestors. The kingdom Archezoa has been abandoned.

Bio. 230 --- Classification, Taxonomy, Nomenclature

The Two Empire System

Cavalier-Smith megaclassification of prokaryotes (life) Two Empires: Prokaryota and Eukaryota and six kingdoms

- Some authors have opposed the three domain system proposed by Woese *et al.*,1987 and 1990 due to various reasons.
- One prominent scientist which opposes the three domain system is Thomas Cavalier-Smith.
- Cavalier-Smith,2002 put it, with "mega-classification" of prokaryotes, focusing on taxonomy of higher ranks.

The Two Empire System

Cavalier-Smith megaclassification of prokaryotes (life) Two Empires: Prokaryota and Eukaryota

- An empire is a taxonomic group used in Cavalier-Smith's six-kingdom classification system (1998).
- Cavalier-Smith emphasizes the fundamental difference in cell structure between prokaryotes and eukaryotes by creating two supergroupings called empires:
- 1. Prokaryota,
- 2. Eukaryota.

He has also published prodigiously on issues such as the origin of various cellular organelles (including the nucleus, mitochondria), genome size evolution, and endosymbiosis.

Jones and Bartlett Publishers, 2007; Wikipedia, 2012

The Two Empire System

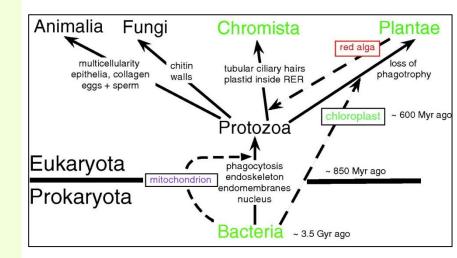
Cavalier-Smith megaclassification of prokaryotes(life) Two Empires: Prokaryota and Eukaryota and six kingdoms

- 1. The kingdom Bacteria is in empire Prokaryota;
- 2. The other kingdoms are in empire Eukaryota.
- 3. He also creates a new kingdom called Chromista.
- The latter kingdom (chromista) contains photosynthetic organisms (e.g., diatoms, brown algae, water moulds, etc.), whose chloroplasts differ from those found in plants.

The Two Empire System Cavalier-Smith megaclassifcation of life Two Empires: Prokaryota and Eukaryota and six kingdoms

- Prokaryotes constitute a single kingdom, Bacteria.
- Bacteria is divided into two new subkingdoms:
- 1. Subkingdoms Negibacteria, with a cell envelope of two distinct genetic membranes.
- Negibacteria as a root of the universal tree
- 2. Subkingdom Unibacteria, comprising the new phyla Archaebacteria and Posibacteria.
- Other new bacterial taxa are established in a revised higher-level classification that recognizes only:
- 1. 8 phyla, and
- 2. 9 classes.

The Two Empire System Cavalier-Smith megaclassification of life Two Empires: Prokaryota and Eukaryota and six kingdoms


- Thomas Cavalier-Smith,2002 takes into account many phenotypic characteristics, and is not sequence-based.
- Cavalier-Smith basically concludes that:
- 1. Double-membraned Gram-negative bacteria (he calls them Negibacteria) lie near the root of the bacterial tree (3700 Mya), and
- 2. That the Archaea and Eucarya are relatively recent (850 Mya) emergents from a line that also gave rise to the modern Gram-positive bacteria and actinobacteria.
- 3. In 2006, Cavalier-Smith proposed that the last common ancestor to all terrestrial organisms was a non-flagellate negibacterium with two membranes.

bactorium (receptors phagocripois)yosome phagolysosomes (yosome phagolysosomes (yosome phagolysosomes (yosome phagolysosomes) (yosobe debra exceptosis

The Two Empire System Cavalier-Smith megaclassification of life

Two Empires: Prokaryota and Eukaryota and six kingdoms

- The six-kingdom, twoempire classification of life.
- Three major lineage mergers (symbiogeneses involving cell enslavement after phagocytic engulfment) are shown as dashed lines;
- 2. Four additional mergers that transferred chloroplasts from green plants or chromists into different protist lineages to make novel kinds of algae (Cavalier-Smith 2007c).

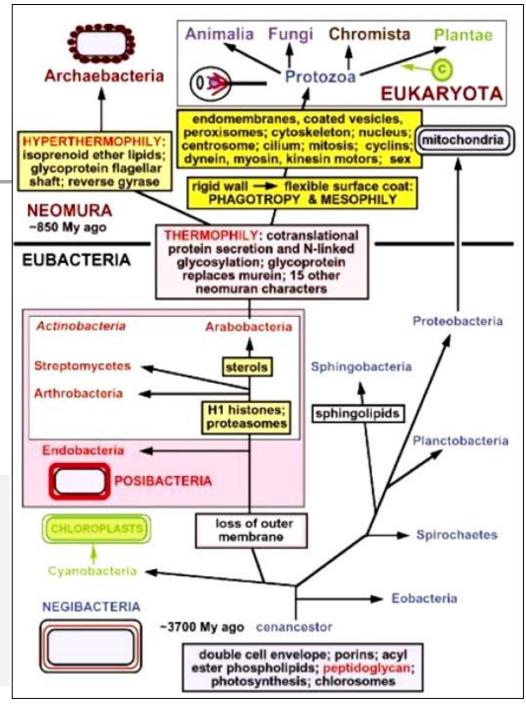
Phagocytes are cells that protect the body by ingesting harmful foreign particles, bacteria, and dead or dying cells.

The abbreviations Gya (giga-annum) or bya are for billion years ago.

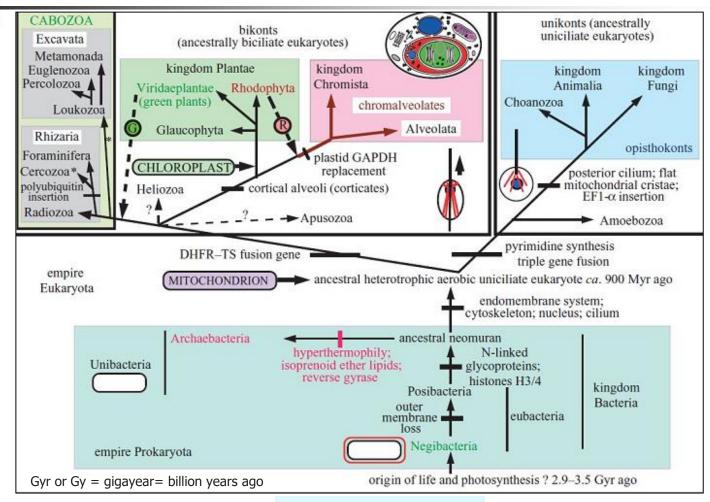
Cavalier Smith,2010

Terminology

- Arbobacteria (insect-vectored bacteria) are pathogens Transmittable by Arthropods (insects). e.g. phytoplasmas, "Candidatus Liberibacter" and Rickettsia sp.,..
- Arthrobacteria are coryneform bacteria.
- **Sterols**, the third lipid class.
- Protozoa (also protozoan, plural protozoans) is an informal term for a group of single-celled eukaryotes
- Rhizaria have been broadly divided into core Cercozoa, Endomyxa,.. It is a diverse collection primarily of free-living protozoan organism.
- Glidobacteria, the new infrakingdom including Chlorobacteria, Hadobacteria, Cyanobacteria and excluding Actinobacteria and Firmicutes.
- **Adobacteria** such as Deinococci.
- Planctobacteria, the origin of eukaryotic and archaebacterial cells. Cavalier-Smith considered as phylum but later it was considered as a superphylum.
- The **PVC group** is a superphylum of bacteria named after its three important members, Planctomycetes, Verrucomicrobia, and Chlamydiae.

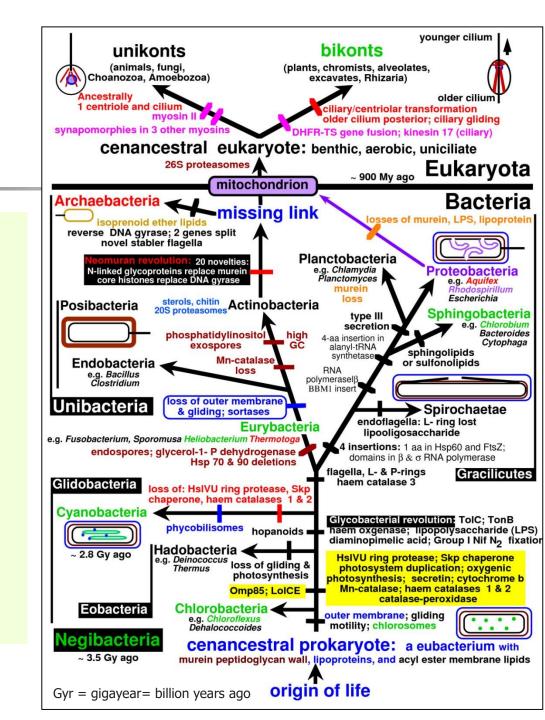

The bacterial origins of eukaryotes as a two-stage process

Neomura (new wall) is a clade composed of Archaea and Eukaryota. The Archaea and the Eukaryotes stem from Gram positive bacteria (Posibacteria), which in turn derive from gram negative bacteria (Negibacteria).


Neomura means "new walls. The adjectival form is Neomuran, and A single individual from the group is called a Neomuran.

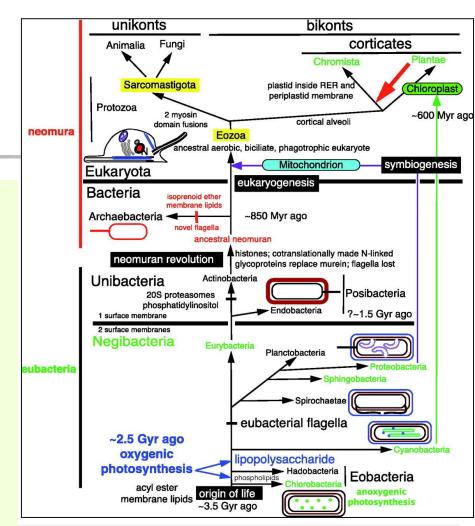
The cholorosome contains bacteriochlorophyll c, d, or e.

Reverse gyrase is an enzyme that introduces positive supercoils into covalently closed DNA. Sterols, the third lipid class. Acyl lipids


The Two Empire System Cavalier-Smith megaclassification of life Two Empires: Prokaryota and Eukaryota

Cavalier Smith,2004

The rooted tree of life


- The new negibacterial infrakingdom Gracilicutes segregates four phyla from the other negibacteria.
- Eubacteria must be significantly older than eukaryotes.
- The age of ~900 My for eukaryotes is based on a recent Bayesian analysis of 143 proteins multiply calibrated from the fossil record.

Cavalier-Smith,2006

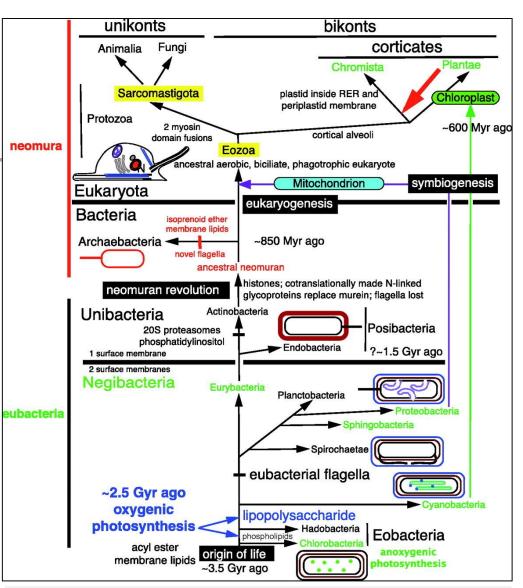
The bacterial origins of eukaryotes as a two-stage process

- Intracellular coevolutionary theory:
- The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria.
- The eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy.
- Eukaryotes plus their archaebacterial sisters form the clade Neomura.

Bikont is a eukaryotic cell with two flagella; thought to be the ancestor of all plants while **unikont** is a eukaryotic cell with a single flagellum; thought to be the ancestor of all animals.

Cavalier-Smith,2010

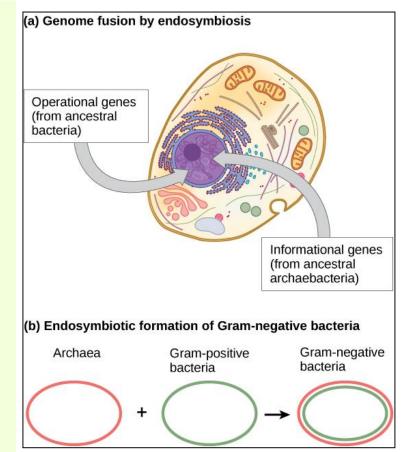
Neomura (new wall) is a clade composed of Archaea and Eukaryota.

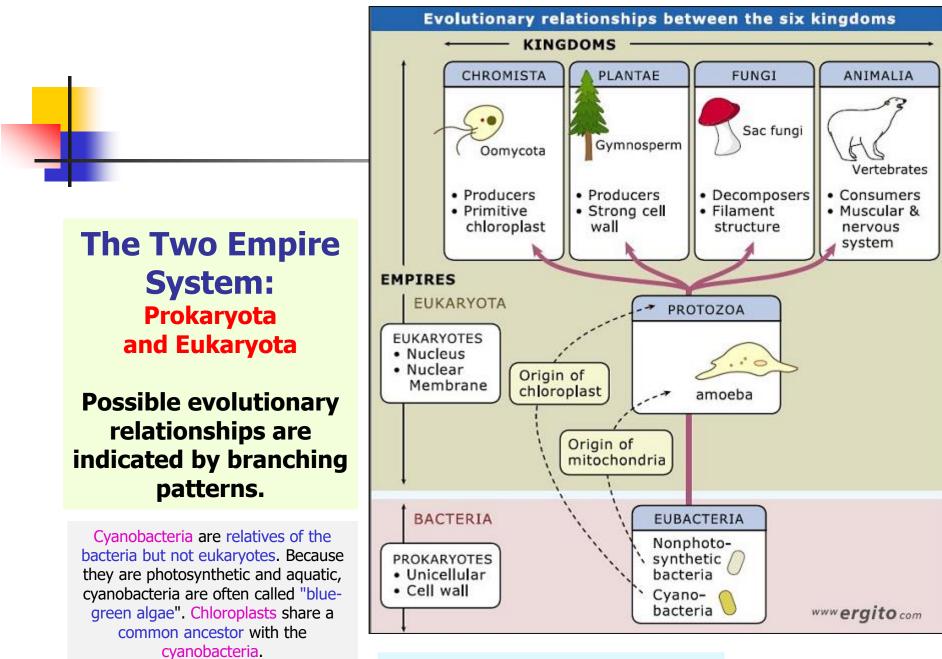

The Archaea and the Eukaryotes stem from Gram positive bacteria (Posibacteria), which in turn derive from gram negative bacteria (Negibacteria).

Neomura means "new walls. The adjectival form is Neomuran, and A single individual from the group is called a Neomuran.

The cholorosome contains bacteriochlorophyll c, d, or e.

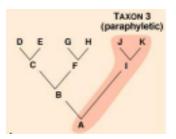
Reverse gyrase is an enzyme that introduces positive supercoils into covalently closed DNA.


Cavalier-Smith,2010


Bikont is a eukaryotic cell with two flagella; thought to be the ancestor of all plants while **unikont** is a eukaryotic cell with a single flagellum; thought to be the ancestor of all animals.

Endosymbiosis in eukaryotes

- The theory that mitochondria and chloroplasts are endosymbiotic in origin is now widely accepted.
- More controversial is the proposal that
- a) the eukaryotic nucleus resulted from the fusion of archaeal and bacterial genomes; and that
- b) Gram-negative bacteria, which have two membranes, resulted from the fusion of Archaea and Gram-positive bacteria, each of which has a single membrane.



Boundless.com

Jones and Bartlett Publishers, 2007

The Two Empire System Cavalier-Smith megaclassifcation Logical arguments

- Though fairly well known, many of his claims have been controversial and have not gained widespread acceptance in the scientific community to date.
- Most recently, he has published a paper citing the paraphyly of his bacterial kingdom, the origin of Neomura from Actinobacteria and taxonomy of prokaryotes.

The arrangement of the members of a paraphyletic group is called a paraphyly. Paraphyletic group, a group of organisms which contains a common ancestor and some, but not all, of the descendants.

The Two Empire System Cavalier-Smith megaclassifcation Logical arguments

- Thomas Cavalier-Smith schemes based on several logical arguments, which are highly controversial and generally disregarded by molecular biology community and are often not even mention in reviews due to the subjective nature of the assumptions made for logical arguments.
- In total, his views have been influential but controversial, and not always widely accepted.

The Fourth natural classification scheme Ruggiero *et al.*,2015

Two superkingdoms: Prokaryota and Eukaryota and seven kingdoms

- Cavalier-Smith and his collaborators revised the classification in 2015, and published it in PLOS ONE journal.
- In this scheme they reintroduced the division of prokaryotes into two kingdoms:
- 1. Bacteria (=Eubacteria), and
- 2. Archaea (=Archebacteria).
- This is based on the consensus in the:
- 1. Taxonomic Outline of Bacteria and Archaea (TOBA), and
- 2. The Catalogue of Life.

The Fourth natural classification scheme Ruggiero *et al.*,2015

Two superkingdoms: Prokaryota and Eukaryota and seven kingdoms

- We are proposing a two-superkingdom (Prokaryota and Eukaryota), seven-kingdom classification that is a practical extension of Cavalier-Smith's six-kingdom schema(1998).
- Our schema includes:
- The prokaryotic kingdoms:
- 1. Archaea (Archaebacteria), and
- 2. Bacteria (Eubacteria), and
- The eukaryotic kingdoms:
- 1. Protozoa,
- 2. Chromista,
- 3. Fungi,
- 4. Plantae, and
- 5. Animalia.

Ruggiero *et al.*,2015 Two superkingdoms: Prokaryota and Eukaryota and seven kingdoms

Linnaeus 1735	Haeckel 1866	Chatoon 1925	Copeland 1938	Whittaker 1969	Woese <i>et</i> <i>al.,</i> 1977	Woese <i>et</i> <i>al.,</i> 1990	Cavalier- Smith,1993	Cavalier- Smith,1998 &2004	Ruggiero <i>et</i> <i>al.,</i> 2015
2 kingdoms	3 kingdoms	2 empires	4 kingdoms	5 kingdoms	6 kingdoms	3 domains	8 kingdoms	6 kingdoms	7 kingdoms
(not treated)	Protista	Prokaryota	Mychota	Monera	Bacteria	Eubacteria	Eubacteria	Bacteria	Bacteria
					Archaebacteri a	Archaea	Archaebacte ria		Archaea
		Euokaryota	Protoctista	Protista	Protista		Archezoa	Protozoa	Protozoa
							Protozoa		
						Eukarya	Chromista	Chromista	Chromista
Vegetabila	Plantae		Plantae	Plantae	Plantae	,	Plantae	Plantae	Plantae
. egetabila				Fungi	Fungi		Fungi	Fungi	Fungi
Animalia	Animalia		Animalia	Animalia	Animalia		Animalia	Animalia	Animalia

The major revisions of Cavalier-Smith's classification schemes Eight to six and lastly seven kingdom systems

Cavalier-Smith, 1993	Cavalier-Smith,1998 & 2004	Ruggiero <i>et al.,</i> 2015	
8 kingdoms	6 kingdoms	7 kingdoms	
Eubacteria		Bacteria	
Archaebacteria	Bacteria	Archaea	
Archezoa	Protozoa	Protozoa	
Protozoa	FIOLOZOA	PTOLOZOd	
Chromista	Chromista	Chromista	
Plantae	Plantae	Plantae	
Fungi	Fungi	Fungi	
Animalia	Animalia	Animalia	

Cavalier-Smith and his collaborators revised the classification in 2015 (Ruggiero *et al.*,2015).

Wikipedia,2020

Ruggiero et al.,2015

Two superkingdoms: Prokaryota and Eukaryota and seven kingdoms Logical arguments

- The proposed classification of prokaryotes and eukaryotes which was published by Ruggiero *et al.*,2015 may be:
- 1. reasonable in their classification of the prokaryotes,
- 2. the eukaryote section does not pass standards of modern biology.

Ruggiero et al.,2015

Two superkingdoms: Prokaryota and Eukaryota and seven kingdoms Logical arguments

- It is definitely not the only possible classification, and not the consensus one.
- Based on the same phylogenetic scheme, several equally "correct" classifications can be drafted.
- In general, I see no particular benefit in this kind of detailed classifications: many groups can be treated differently, in different ranks and circumscriptions.
- There are many alternative classification schemes for particular large groups. As to plants, I have many questions regarding the selected approach and accepted taxa and "taxa".

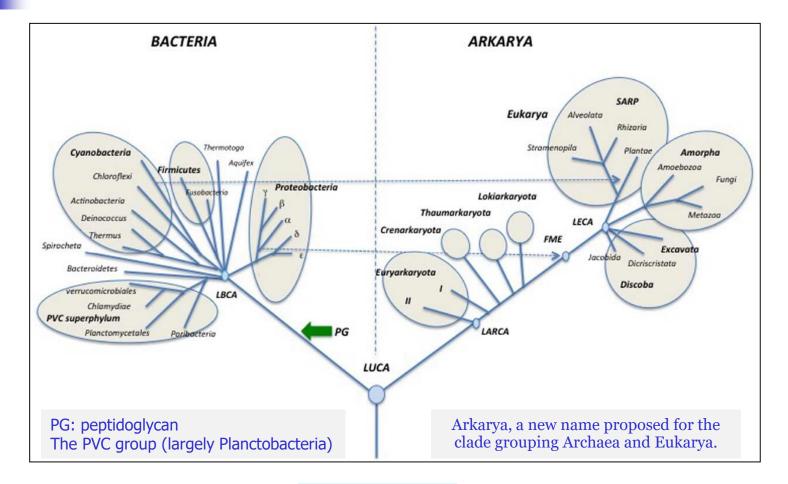
Ruggiero et al.,2015

Two superkingdoms: Prokaryota and Eukaryota and seven kingdoms Logical arguments

- I do not understand why one need all the time to redo taxonomy? It only confuses researchers and gives nothing new to biology.
- In recent years, the system of organisms altered many times.
- Now it is almost impossible to determine not only the species and the genus of the specimens, but more higher rank up to kingdom.
- Anyway Nature is richer than any classification.
- It is better don't change the classification and use of the old one, more or less established.

Some recent natural classification scheme The universal tree of life: an update Based on ribosomal protein trees

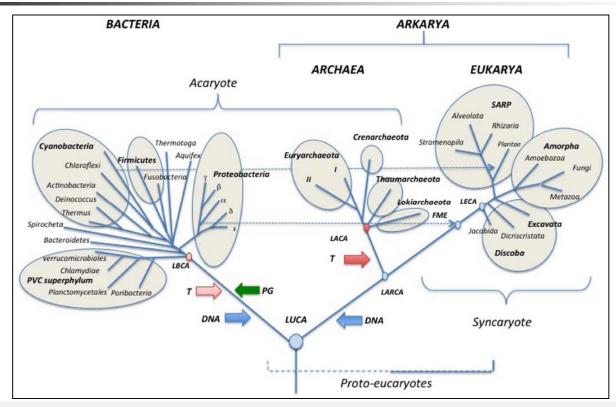
- Universal multiprotein ribosomal protein (RP) trees- Offer markedly higher resolution for prokaryote phylogeny than rDNA:
- 1. Forterre,2015
- 2. Kovacs *et al.*,2018
- 3. Cavalier-Smith and Chao, 2020


Some recent natural classification scheme Based on ribosomal protein trees Forterre,2015

- Rooting of the domain Bacteria and internal branching in this domain have been adapted from the ribosomal protein trees of Koonin and colleagues (Yutin *et al.*,2012).
- These authors have suggested several superphyla beside the previously recognized PVC superphylum, which includes:
- Planctomycetes,
- Verrucomicrobia, and
- Chlamydiae.

Cavalier-Smith calls the PVC group as Planctobacteria and considers it a phylum and not superphylum.

Forterre,2015,Wikepdia,2020


The universal tree of life: an update Universal multiprotein ribosomal protein (RP) trees Offer markedly higher resolution for prokaryote phylogeny than rDNA

Forterre,2015

The universal tree of life: an update Universal multiprotein ribosomal protein (RP) trees

Offer markedly higher resolution for prokaryote phylogeny than rDNA

Schematic universal tree updated from (Woese et al., 1990)

DNA (blue arrows) introduction of DNA; T (pink and red arrows) thermoreduction. LBCA: Last Bacterial Common Ancestor, pink circle: thermophilic LBCA; LACA: Last Archaeal Common Ancestor, red circle, hyperthermophilic LACA. LARCA: Last Arkarya Common Ancestor; FME: First Mitochondriate Eukarya; LECA: Last Eukaryotic Common Ancestor; blue circles, mesophilic ancestors. SARP: Stramenopila, Alveolata, Rhizobia.

Forterre,2015

Some recent natural classification scheme Based on ribosomal protein trees Kovacs *et al.*,2018

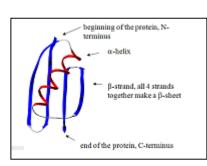
- Rooting of the domain Bacteria and internal branching in this domain have been adapted from the ribosomal protein trees of Koonin and colleagues (Yutin *et al.*,2012).
- These authors have suggested several superphyla beside the previously recognized PVC superphylum, which includes:
- Planctomycetes,
- Verrucomicrobia, and
- Chlamydiae.

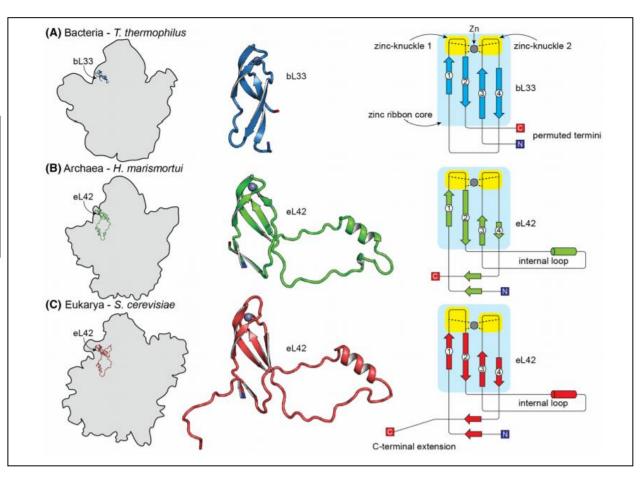
Cavalier-Smith calls the PVC group as Planctobacteria and considers it a phylum and not superphylum.

Forterre,2015,Wikepdia,2020

The universal tree of life: an update Universal multiprotein ribosomal protein (RP) trees Offer markedly higher resolution for prokaryote phylogeny than rDNA

- The ribosome is the most commonly observed intracellular multiprotein complex in bacteria.
- Functions, origins, and evolution of the translation system are best understood in the context of unambiguous and phylogenetically based taxonomy and nomenclature.
- Here, we map ribosomal proteins onto the tree of life and provide a nomenclature for ribosomal proteins that is consistent with phylogenetic relationships.


The universal tree of life: an update Universal multiprotein ribosomal protein (RP) trees Offer markedly higher resolution for prokaryote phylogeny than rDNA


- We have increased the accuracy of homology relationships among ribosomal proteins, providing a more informative picture of their lineages.
- We demonstrate that bL33 (bacteria) and eL42 (archaea/eukarya) are homologs with common ancestry and acute similarities in sequence and structure.
- bL33 and eL42 are composed of zinc ribbon protein folds, one of the most common zinc finger foldgroups of, and most frequently observed in translation-related domains.

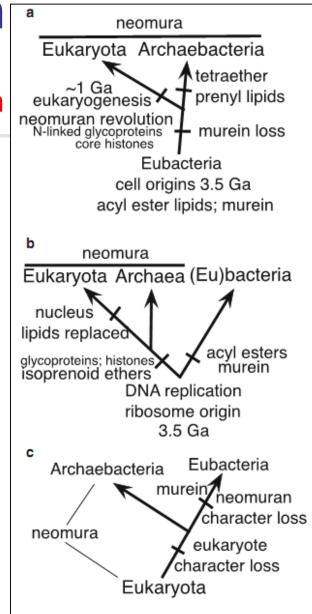
The universal tree of life: an update Universal multiprotein ribosomal protein (RP) trees Offer markedly higher resolution for prokaryote phylogeny than rDNA

- Bacterial-specific ribosomal protein bL33 and archaeal/eukaryotic-specific ribosomal protein eL42 are now both assigned the name of uL33, indicating a universal ribosomal protein.
- We provide a phylogenetic naming scheme for all ribosomal proteins that is based on phylogenetic relationships to be used as a tool for studying the systemics, evolution, and origins of the ribosome.

Kovacs et al.,2018

Some recent natural classification scheme Based on ribosomal protein trees Cavalier-Smith & Chao, 2020

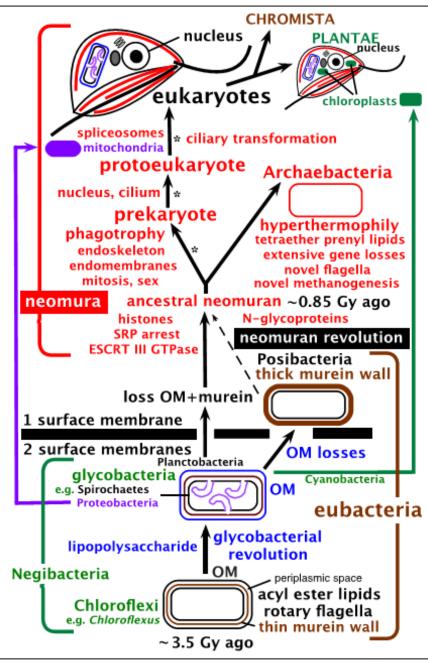
- Multiprotein ribosomal protein (RP) trees now offer markedly higher resolution for prokaryote phylogeny than rDNA.
- Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled.
- Recent discoveries and the results of our RP trees now mean that we recognise 14 distinct eubacteria phyla.


Cavalier-Smith, T. & E. E-Yung Chao. 2020. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma. 257, 621–753. Published: 3 January 2020.

Date od death 19 March 2021 (aged 78).

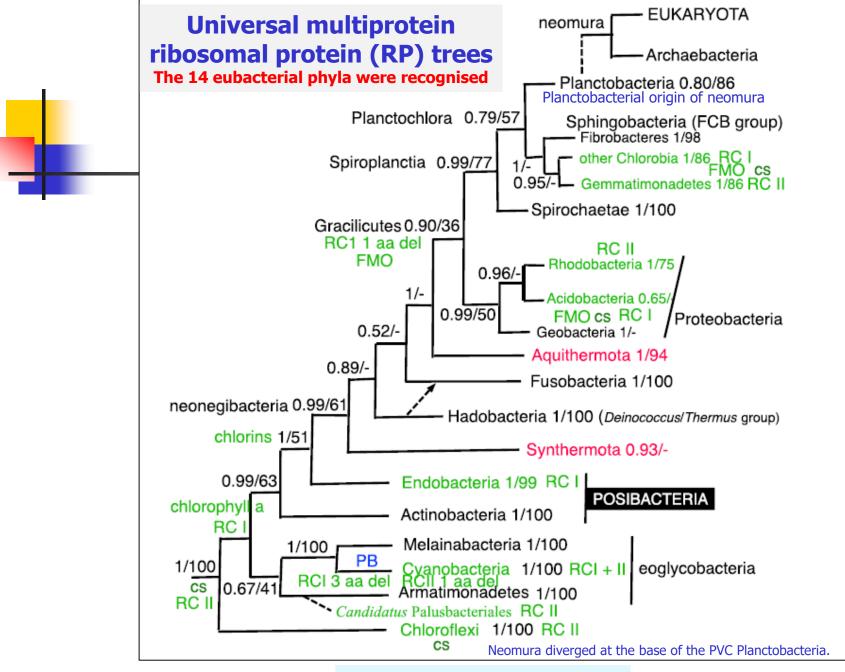
Neomuran revolution Murien loss Planctobacterial origin of neomura

- The archaebacteri a/eukaryote clade was called neomura, meaning new walls, to contrast it with eubacteria that typically have walls of murein peptidoglycan.
- From the outset, it was controversial whether:
- 1. archaebacteria are ancestral to eukaryotes or
- 2. are their sisters still not unambiguously decided.


Gyr or Gy = gigayear= billion years ago Eubacteria(3.5 Ga old) are > 3 × older than neomura (eukaryotes, archaebacteria with 1 Ga old). The Prenyllipids found in higher plants. prenylation (modification by isoprenoid lipids).

Negibacterial root eubacteria

- The major kinds of cell and likely evolutionary relation ships.
- Chloroflexi (e.g., Green Nonsulfur Bacteria) as negibacteria, have an acyl ester phospholipid bilayer OM, being the earliest diverging negibacteria prior to LPS origin remains as strong as ever.
- Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed).



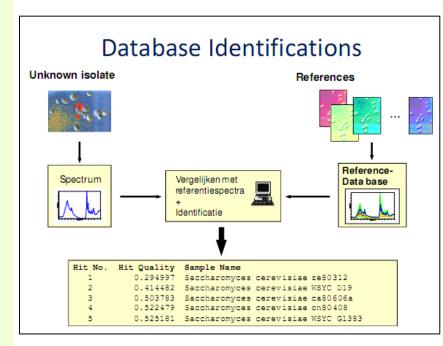
Universal multiprotein ribosomal protein (RP) trees

Offer markedly higher resolution for prokaryote phylogeny than rDNA

- Site-heterogeneous 26-RP trees for 143 eubacteria including all formally named phyla show 14 robust clades that merit recognition as phyla (under half the number previously recognised), several comprising more than one solely-rDNA-based 'phylum', whose constituent clades are better treated as subphyla or classes to simplify eubacterial classification.
- Relative branching order of the 14 robust phyla is much more strongly supported than in site-homogeneous analyses, and significantly doubtful only for the relative order of Hadobacteria and Fusobacteria, which might really be a single clade rather than successive branches.

Updating Prokaryotic Taxonomy

Establishing universal categories for all living organisms, including prokaryotes


(Towards a universal species concept and natural classification system)

Overview

- 1. General introduction in bacterial taxonomy
- 2. Identification of bacteria
- 3. Comparison of microbial identification methods:
- > traditional methods
- > molecular methods
- > chemotaxonomic methods
- 4. Database identifications
- 5. Summary and general considerations.

Database identifications

- Quality and completeness > crucial for accurate identification.
- Species not included → never be given as identification result.
- Include a set of representative strains, not only the type strain.
- Expand with new genera and species (formally described).
- Define well evaluated acceptation criteria.
- Commercial databases (CE/IVD) available.

IVD (In Vitro Diagnostics) devices (e.g. antibody, antigen, coated ELISA plates). IVD includes 'kit' as being an IVD in itself. The CE marking indicates a product's compliance with EU legislation.

Elke,2010

Important breakthroughs in prokaryote taxonomy In the last 30 years

- 1. Computerized developments of numerical taxonomy;
- 2. A little later, but almost simultaneously, came the introduction of the first genomic parameters, G+C mol% content and whole-genome hybridizations, and these were followed by:
- 3. The appearance of numerous techniques revealing relevant chemical components (i.e., chemotaxonomy).
- 4. The most recent relevant innovation introduced into prokaryotic taxonomy is the use of gene or protein sequences, and especially that of the 16S rRNA gene, as molecular clocks.

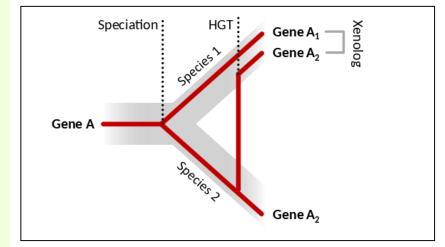
Important breakthroughs in prokaryote taxonomy After a lapse of more than 30 years

- We have definitively entered the genomic era.
- The number of completely sequenced genomes is geometrically increasing with time simultaneously with the decrease in cost of such techniques.
- Thus, the race has begun to find those parameters that can be retrieved and that are useful for scientific taxonomic purposes using the current information data set.
- There is hope that genomics will produce tools to definitively understand "natural relationships" between microorganisms.

Important breakthroughs in prokaryote taxonomy Genome signature-Difference in sequence

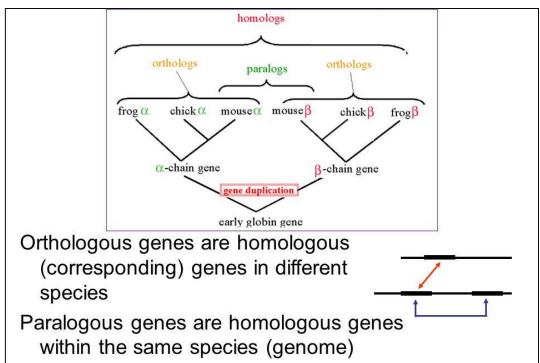
- Genome signature is the relative abundance profile of di-, tri-, and tetranucleotides present in the genome.
- This method, developed by Karlin and colleagues and known as Karlin signatures.
- Genes that are shared between organisms can differ considerably in sequence.
- The percentage sequence divergence in orthologous genes is described by the ANI parameter (ANI: average nucleotide identity).

Important breakthroughs in prokaryote taxonomy After a lapse of more than 30 years

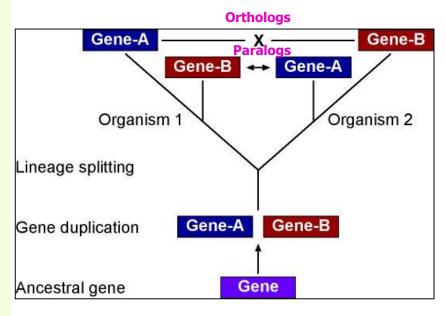

- Two new genome-based parameters applicable to prokaryotic taxonomy are:
- Average amino acid identity (AAI): Pairwise genome comparisons and averaging the sequence identities of shared orthologous genes (amino acid).
- 2. Average nucleotide identity (ANI): Pairwise genome comparisons and averaging the sequence identities of shared orthologous genes (nucleotide).
- Both achieve, to a great extent, the goal that whole-genome DNA hybridizations (DDH) pursued and that has been especially determinant for the circumscription of prokaryotic species.

Rosselló-Mora,2005

Orthologous genes: Genes in different species that are homologous (similar) because they are derived from a common ancestral gene.


Homologs vs Orthologs

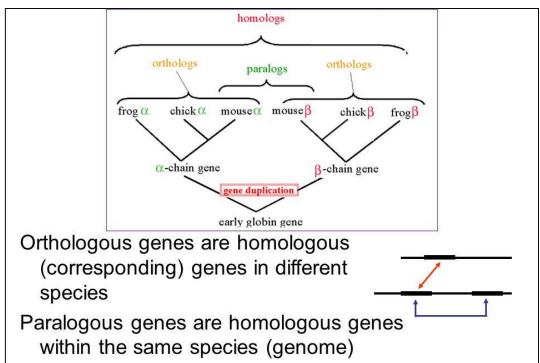
- A homologous gene (similar) is a gene inherited in two species by a common ancestor.
- Orthologous, the copy of the same genes are generated by speciation, not by gene duplication.
- Xenolog (plural xenologs) (genetics): A type of ortholog where the homologous sequences are found in different species because of horizontal gene transfer.


Homologs Orthologs vs paralogs

- Orthologous genes: Genes in different genomes (species) with a common origin.
- Paralogous genes: Genes in the same genomes (species) with a common origin.

Orthologs and paralogs Ortho-paralog tree

- Orthologous genes: Genes in different species (organisms 1 and 2) that are homologous (similar) because they are derived from a common ancestral gene (X).
- Paralogs are genes related by gene duplication (Gene A and Gene B from ancestral gene (←>).



See also species definition section

GPS; www.icp.ucl.ac.be/~opperd/private/orthol.html

Homologs Orthologs vs paralogs

- Orthologous genes: Genes in different genomes (species) with a common origin.
- Paralogous genes: Genes in the same genomes (species) with a common origin.

A. Phenetic Classification

Conventional Bacterial Taxonomy (Numerical taxonomy)

Numerical Taxonomy Phenetic Taxonomy

- Numerical taxonomy is a common approach to phenetic taxonomy.
- Numerical identification is a methods which is used a large number of tests (~100) and the results are scored as positive or negative.
- Several control species are included in the analysis.
- All characteristics are given equal weight and a computer based analysis is carried out to identify the bacteria.

Categories of characters used in classification

Category	Examples	
Cultural	Colonial morphology, pigmentation	
Morphological	Cell shape, staining reactions, motility	
Physiological	Growth temperatures, anaerobic growth	
Biochemical	Acid from carbohydrates, nitrate reduction	
Nutritional	Organic acids as sole carbon and energy sources, vitamin requirements	
Chemotaxonomic	Amino acids in interpeptide bridges of cell wall, types of lipids in membranes	
Inhibitory tests	Sensitivities to antibiotics, dye tolerance	
Serological	Agglutination by antisera to reference strains	
Genomic	mol%GC in DNA, DNA–DNA reassociation	

Logan,1994

Categories of characters used in classification Classical characteristics

- Use a variety of characteristics: e.g., Gram stain, cell shape, motility, size, aerobic/anaerobic capacity, nutritional capabilities, cell wall chemistry, immunological characteristics such as:
- Morphology and structure: Shape, motility, Gram reaction, etc.
- Microscopy: Gram stain, acid-fast stain, cell morphology, cell arrangements
- **Colony morphology**: Size, color, border shape, etc.
- Growth on: Differential, Selective media agar, etc.
- Cultural characteristics: Photroph, chemotroph, aerobe/anaerobe, etc.
- Biochemical activities: Catalase, urease, oxidase, C/N utilizations
- Pathogenicity: Specific host infection, tissue colonization, etc.
- Serological reactions: Serotype or serovar, etc.
- Phage typing: Bacterial host specific, lyzotype
- **Gross protein analysis**: Electrophoretic patterns of the cell's proteins
- Amino acid sequencing: Amino acid sequence (s) of a given protein (s)
- Chemotaxonomy: Cell wall, Lipid & Protein compositions, Pyrolysis.

Pyrolysis is a process of chemically decomposing organic materials at elevated temperatures in the absence of oxygen. E.g. cellulose pyrolysis mainly produces three substances: (1) furans, (2) pyrans, and (3) linear small molecules.

Chemotaxonomy methods

- Classify organisms based on differences and similarities in chemical markers (cell wall constituents, lipids, whole cell proteins)
- Chemotaxonomic fingerprints of bacteria:
- 1. FAME GC (Fatty Acid Methyl Esters),
- 2. SDS-PAGE (sodium dodecyl sulphatepolyacrylamide gel electrophoresis) of whole cell proteins,
- 3. FTIRS (Fourier-transform infrared spectroscopy),
- 4. MALDI-TOF MS (Matrix assisted laser desorption ionizationtime of flight mass spectrometry),
- 5. ESI MS(ionization mass spectrometry),...

Elke,2010

Cellular components and methods in chemotaxonomy

Site or level	Components	Analytical methods*
Extracellular	Products of metabolism	TLC, GLC, HPLC and isotachophor- esis of extracts and derivatives
	Polysaccharides	GLC of derivatives
Whole-organism	Whole-organism	FT-IR spectrometry
	Pyrolysate	Pyrolysis GLC or MS
	Fatty acids	GLC of methyl esters
	Proteins	PAGE, two-dimensional electro- phoresis and isoelectric focusing
	Polyamines	HPLC of dansyl derivatives
	Sugars	GLC of methyl glycosides
Gram-negative outer membrane	Lipopolysaccharide	Purification by UC then GLC of methyl esters and glycosides
	Polar lipids	TLC of solvent extracts
Mycobacterial	Mycolic acids	TLC of methyl esters
outer membrane	Free lipids	TLC of solvent extracts
Cell wall	Peptidoglycan:	
	l Diaminopimelate	PC and TLC of whole organism or wall hydrolysates
	2 Other amino acids	PC and TLC of wall hydrolysates, GLC of derivatives, AAAA
	3 Glycan type	Glycolate test
	Polysaccharides	As for whole-organism sugars
	Teichoic acids	Chemical analysis and serology
Plasma membrane	Isoprenoid quinones	TLC, RPTLC, GLC, HPLC, RPHPLC
	Polar lipids	and DPMS of solvent extracts
	Cytochromes	Spectrophotometry
Proteins	Enzymes	PAGE, growth independent enzyme assays (rapid enzyme tests) and functional characterization
	Amino acids	
	Amino acids	Sequencing

* Abbreviations: AAAA, automatic amino acid analysis; DPMS, direct probe mass spectrometry; FT-IR, Fourier-transform infrared; GLC, gas-liquid chromatography; HPLC, high-performance liquid chromatography; MS, mass spectrometry; PAGE, polyacrylamide gel electrophoresis; PC, paper chromatography; RPHPLC, reversephase HPLC; RPTLC, reverse-phase TLC; TLC, thin-layer chromatography; UC, ultracentrifugation.

Logan,1994

Numerical taxonomy

- In the 1950s-1960s it became evident that the analysis of large numbers of characteristics provided a more stable classification and a superior means to classify and identify bacteria.
- First generations of computers were used to analyze large data sets of biochemical and phenotypic characteristics.

Vandamme,2013

Numerical Taxonomy Phenetic Taxonomy

- To create phenetic classification systems;
- multistep process;
- code information about properties of organisms
 e.g., 1 = has trait; 0 = doesn't have trait
- use computer to compare organisms on ≥50 characters;
- determine association coefficient (e.g. Simple matching coefficient)
- construct similarity matrix
- identify phenons and construct dendograms.

Numerical Taxonomy Similarity coefficient

- Three genetic similarity coefficients were estimated and compared for their usefulness:
- 1. Simple matching (S_{SM}) ,
- 2. Jaccard's (S_J), and
- 3. Dice's $(S_{\rm D})$.

For each coefficient, the similarity matrix was used to construct dendrograms with the help of the unweighted pair grouping by mathematical averaging (UPGMA) methods, using the SAHN and TREE programmes in NTSYS.

Numerical Taxonomy Three main similarity coefficients

- Typical coefficients are:
- Simple matching coefficient (SSM)- Based on the number of characteristics that match between two organisms; ignore mismatches.
- 2. Jaccard coefficient (SJ)- Ignores characteristics both organisms lack.
- Sorensen-Dice coefficients (S_D)- In cluster analysis, the Jaccard and Sorensen-Dice coefficients revealed extremely close results, because both of them exclude negative co-occurrences.

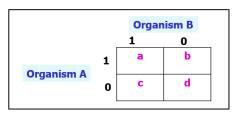
Similarity analyses were done with the NTSYS-PC program.

Numerical Taxonomy Three main similarity coefficients

Coefficients	Similarity expression(%)	Source
Simple matching (SM)	<u>a + d</u> a + b + c + d	Sokal and Michener, 1958
Jaccard (J)	a a + b + c	Jaccard, 1901
Sorensen-Dice (SD)	2a 2a + b + c	Sorensen, 1948; Dice, 1945

Dalirsefat et al.,2009

Similarity coefficients Simple matching coefficient (S_{SM})


 Simple matching coefficient (SM) as a measure of genetic diversity for each pair of isolates:

$$SM = (a + d)/(a + b + c + d)$$

Where

 d is the total number of bands absent in isolates 1 and 2.

Simple matching coefficient (S_{SM}) The calculation of association coefficient for two organism

In this example, organism A and B are compared in terms of the characters they do and do not share. The terms in the association coefficient equations are defined as follows:

a = number of characters coded as present (1) for both organisms;

b and **c**= numbers of characters differing as (1,0 or 0,1) between two organisms;

d = number of characters absent (0) in both organisms Total number of characters compared = a+b+c+d.

The simple matching coefficient (S_{SM})= $\frac{a+d}{a+b+c+d}$

Where, a character present and d character absent.

Numerical Taxonomy Simple matching coefficient (S_{SM}) Usually expressed in percent

- Relies on similarity coefficients.
- Calculates the percentage of characteristics that two organisms or groups have in common.
- If use 10 characteristics, then match organisms:

Example: A and B share 8 characters out of 10: similarity coefficient S_{ab} is 8/10=0.8 (80%). Can use many such values to establish similarity matrix. Dendrograms help display this information clearly.

Numerical Taxonomy Simple matching coefficient (S_{SM}) Usually expressed in percent

- The number of common characters is considered as a quantitative measure for the taxonomic relationship (not phylogenetic relatedness).
- Similarities are quantitatively expressed by the matching coefficient of Sokal and Michener (Skerman, 1967), usually expressed in percent:

 $S_{SM} = \frac{sum of positive and negative matches}{total number of tests} X 100$

A and B share 8 characters out of 10: similarity coefficient S_{ab} is 8/10=0.8 (80%).

The Prokaryotes (chapter 1.4),2006

Similarity coefficients Jaccard similarity coefficient (SJ or J)

- The Jaccard similarity index (sometimes called the Jaccard similarity coefficient) compares members for two sets to see:
- 1. which members are shared, and
- 2. which are distinct.
- It's a measure of similarity for the two sets of data, with a range from 0% to 100%.
- The higher the percentage, the more similar the two populations.

The Jaccard coefficient
$$(S_J) = \frac{a}{a+b+c}$$

Statistics How To,2016

Similarity coefficients Jaccard similarity coefficient (SJ or J)

- How to Calculate the Jaccard Index:
- The formula to find the Index is:
- Jaccard Index = (the number in both sets) / (the number in either set) x100
- The same formula in notation is:

The formula to find the Index is:

Jaccard Index = (the number in both sets) / (the number in either set) * 100

The same formula in notation is:

 $J(X,Y) = |X \cap Y| / |X \cup Y|$

 \cap (union)=The symbol used for the intersection of two sets. Intersection is a group of items that belong to two different sets.

Statistics How To,2016

Similarity coefficients Sorensen-Dice coefficients(S_D)

 Similarity matrices were generated using DICE and simple matching coefficients and the resulting dendrograms were compared:

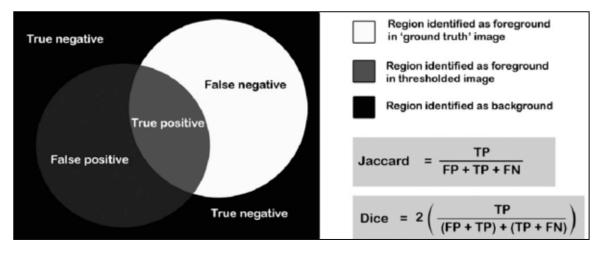
DICE = 2a/(2a + b + c)

where

- *a* is the number of shared bands,
- *b* is the number of bands present only in isolate 1, and
- *c* is the number of bands present only in isolate 2.

Numerical Taxonomy Jaccard and Sorensen-Dice coefficients

 The Jaccard and Sorensen-Dice coefficients revealed extremely close results, because both of them exclude negative co-occurrences.


Coefficients	J	SD	SM
J	1.00		
SD	1.00	1.00	
SM	0.75	0.76	1.00

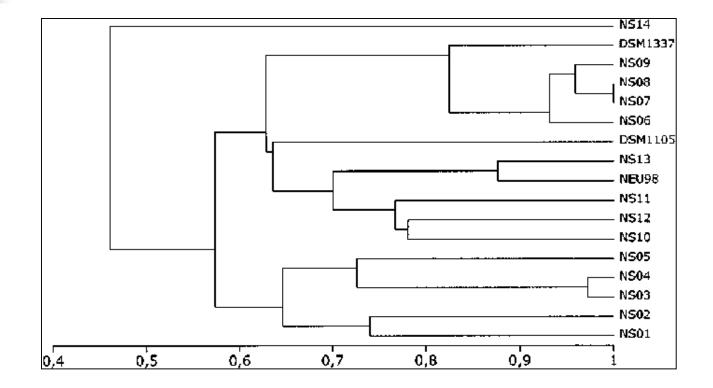
The sorensen-Dice or Jaccard coefficients might be preferable to the simple matching coefficient when using RAPD analysis to compare groups of distantly related taxa.

Dalirsefat et al.,2009

Numerical Taxonomy Jaccard and Sorensen-Dice coefficients

- An explanation of the Dice and Jaccard Indices of similarity.
- FN, false negative; FP, false positive; TN, true negative; TP, true positive.

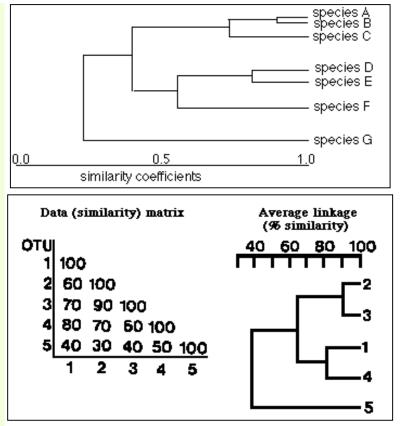
Levin *et al.*,2018


Numerical taxonomy Characterization and numerical taxonomy of novel oxalate-oxidizing bacteria

Clusters	А	В	С	D	Е	F	G
Number of strains (n)	2	3	2	3	DSM1105 ^T	5	NS14
Growth on/at :							
MacConkey agar	50	67	+	-	+	-	+
Cetrimide agar	+	+	+	33	+	60	-
42 °C	+	67	-	67	+	-	-
3% NaCl	+	+	+	33	-	20	+
4% NaCl	50	-	+	-	-	-	+
2% Oxalate	50	67	+	-	-	-	+
Antibiotic resistance							
Chroramphenicol	-	33	50	-	-	80	-
Erythromycine	-	33	-	33	-	80	-
Streptomycine	50	-	-	67	-	80	-
Ampicilline	+	33	+	67	-	+	-
Bacitracine	+	+	+	+	+	+	-
Enzyme activity							
Nitrate reduction	+	-	-	67	+	-	+
Denitrificiation	-	-	-	-	+	-	-
Urease	+	33	-	33	+	+	-
DNase	+	+	-	33	+	20	-
ONPG	50	+	-	-	-	-	+
N-acetly-glucosamine	+	-	-	-	-	-	+
Lipase (C14)	-	67	50	-	-	-	-
Valine arylamidase	+	+	+	33	-	80	+
Cystine arylamidase	+	+	50	67	-	80	-
Trypsine	-	+	-	+	-	+	-
Acid phosphatase	+	+	50	67	+	+	-
α -galactosidase	50	-	-	-	-	-	-
β-glucosidase	50	67	-	-	-	-	+
β-galactosidase	-	67	-	-	-	-	+
α-chymotrypsin	-	67	-	-	-	20	-
Alkaline phosphatase	+	+	+	+	+	+	-
α-glucosidase	-	-	-	-	-	-	+
N-acetly- β -glucosaminidase	-	-	-	-	-	-	+
The values given in the table are the	percentage of p	ositive strains;	[+]: all strains p	ositive, [-]: a	ll strains negative, y	y: yellow, p:	pink.

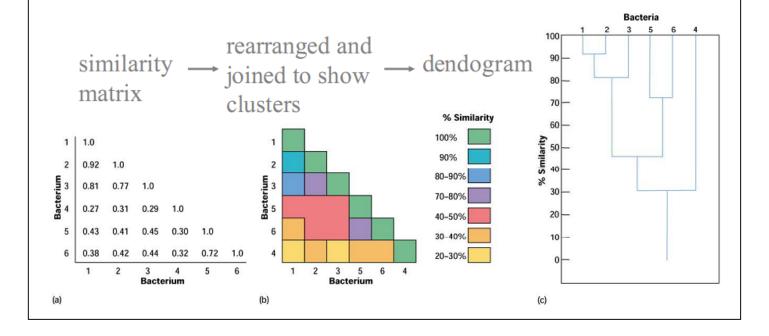
Numerical taxonomy Continued

Clusters	А	В	С	D	Е	F	G
Number of strains (n)	2	3	2	3	DSM1105 ^T	5	NS14
Pigmentation	-	-	У	-	-	р	У
Motility	+	-	+	+	+	+	-
Assimilation of :							
Glucose	+	67	-	-	-	60	+
Arabinose	+	67	-	-	-	-	+
Mannose	+	33	-	-	-	-	+
Maltose	+	-	50	-	-	-	+
Fructose	+	+	-	33	+	80	+
Xylose	+	+	-	33	-	80	+
Lactose	-	33	-	+	-	-	-
Galactose	+	+	-	+	-	-	-
Sucrose	50	-	-	33	-	20	-
Glycine	-	33	-	33	-	-	-
Gluconate	+	33	50	-	+	-	+
Caprate	50	-	-	-	+	-	-
Adipate	+	-	50	-	+	-	-

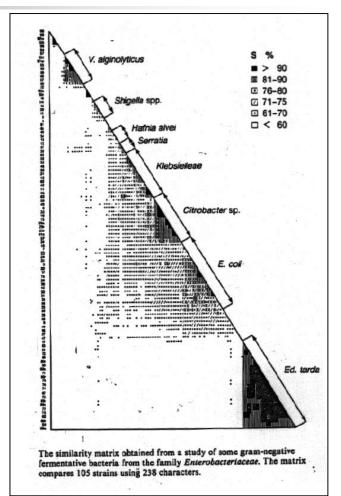

Numerical taxonomy Dendrogram showing phenotypic similarities among the isolates and reference strains

Scale shows the similarities (SSM).

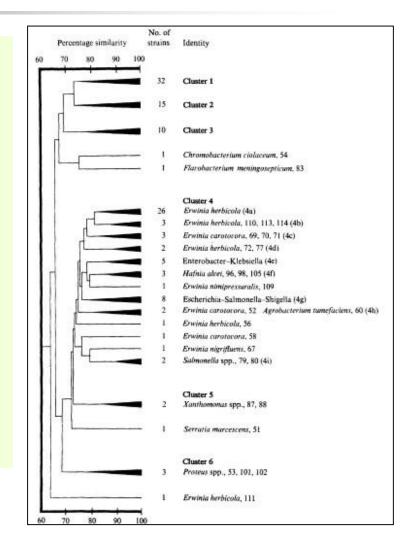
Numerical Taxonomy Similarity coefficients


- Numerical taxonomy, the use of computers.
- The similarity matrix and conversion to dendrogram (phenogram).
- Greater similarity coefficient, closer relatedness is inferred.
- Greater than ~70% and inference is that two compared bacteria are of the same species.

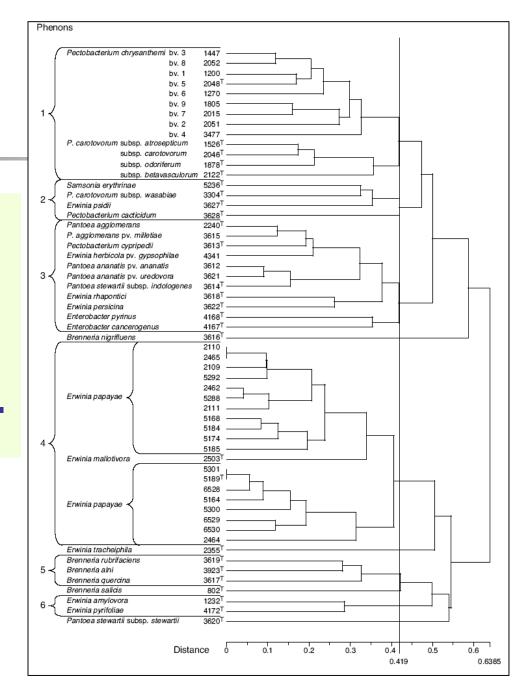
Operational taxonomic unit (OUT)


Numerical taxonomy Similarity coefficients

- dendogram treelike diagram used to display results
- phenon group of organisms with great similarity - phenons with $\geq 80\%$ similarity = bacterial species


Numerical taxonomy Similarity coefficients

- Pattern matrix of the 124 test cultures based on 158 unit characters.
- The coefficients for matches between very many organisms by computer into a matrix (similarity matrix) -->


Numerical taxonomy Numerical taxonomy of some yellowpigmented bacteria isolated from plants

 Simplified dendogram showing the relationship between clusters and subgroups based on the coefficient and average linkage clustering.

Goodfellow et al.,1976

Dendrogram of phenotypic characteristics strains of phytopathogenic *Enterobacteriaceae*.

Numerical taxonomy Similarity matrix obtained from the use of Jaccard coefficient

The similarity analysis based on: morphological characteristics, enzymatic activity, carbon source use and antibiosis assay revealed six clusters formation at 60% of similarity, indicating great diversity among the 20 isolates regarding these traits.

 $\begin{bmatrix} G_1 & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$

Consensus dendrogram obtained by combining the morphological, enzymatic activity, carbon source use and antibiosis data among 20 endophytic isolates obtained from upland rice plants. Dendrogram was generated by the algorithm UPGMA and similarity matrix obtained from the use of Jaccard coefficient.

B. Polyphasic Taxonomy

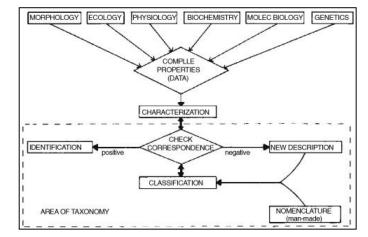
A General Approach to Bacterial Systematics Classical plus Molecular Taxonomy

Polyphasic taxonomy

- Taxonomic scheme which employs a wide range of stable and accepted phenotypic and genotypic information.
- The use of a range of radically different techniques on the same set or organisms allow:
- 1. To produce a classification;
- 2. To describe numerous new species.

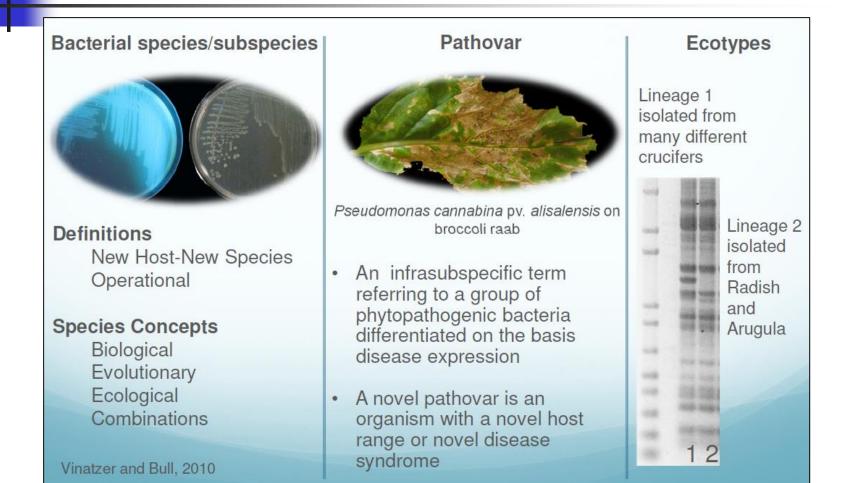
Polyphasic taxonomy

- There is no single molecule that represents all organismal relationships adequately.
- Different molecules carry different types of information.
- A wealth of other methods was developed which were, just like the original biochemical tests, used to classify and identify bacteria.
- All of these methods carried some information that could be used as indirect measure of whole genome similarity between isolates.


Vandamme,2013

Polyphasic Taxonomy

- Taxonomy (systematics or biosystematics) is traditionally divided into three parts:
- i. Classification: The orderly arrangement of organisms into taxonomic groups on the basis of similarity,
- ii. Nomenclature: The labeling of the units defined in (i),
- iii. Identification: The process of determining whether an organism belongs to one of the units defined in (i) and labeled in (ii).
- Two additional parts are needed to completely define modern biosystematics:
- iv. Phylogeny
- v. Population genetics.


Polyphasic Taxonomy Systematics

- The term systematics is often used in synonymy with taxonomy.
- This term (systematics) is better defined as: The scientific study of organisms with the ultimate object of characterizing and arranging them in an organized manner.
- Actually encompasses other disciplines including:
- Morphology,
- Ecology,
- Epidemiology,
- Biochemistry,
- Molecular biology, and
- Physiology.

Chester R. Cooper, Jr., 2004;...

Polyphasic Taxonomy Ranks important to plant pathologists

Carolee T. Bull

Typing methods

Typing methods

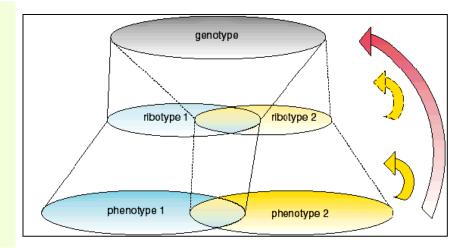
Identification at the level of individual strains:

- identification/elimination of source
- characteristics affecting transmission
- characterization of hypervirulent clones
- etc.

23

Phenotypic methods:	Metabolic activities, protein analysis, susceptibility to phages, etc.
Genotypic methods:	plasmid analysis, PFGE, ribotyping, PCR-ribotyping, MLST, etc.

Pulsed-field gel electrophoresis (PFGE)


Altwegg,2005

BIO

March 200

Typing methods Genotype, Ribotype and Phenotype

- A cell is a system made of:
- 1. Genotype,
- 2. Ribotype, and
- 3. Phenotype.

The ribotype is the collection of molecules and structures based on RNA, i.e., the mRNA, tRNA and the ribosomes. These molecules perform the critical function of translating the genotype into the phenotype.

Modern theories of the cell origin and evolution Genotype, Ribotype and Phenotype

- Modern evolutionary theory is firmly based on the duality of the genotype and the phenotype.
- However Barbieri, 1985 has described a new view in which life is based on a trinity of genotype-phenotype and ribotype.
- At the molecular level:
- 1. The genotype is the DNA,
- 2. The phenotype is the proteins, and
- 3. The ribotype is the collection of molecules such as mRNA, tRNA and the ribosomes.

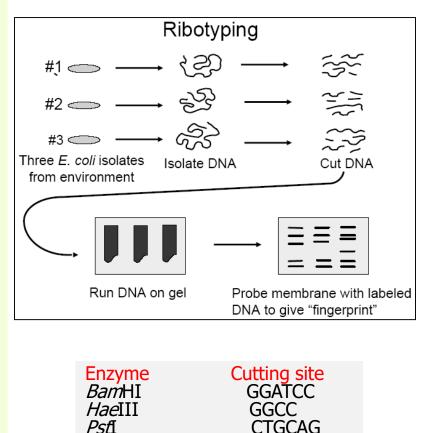
Modern theories of the cell origin and evolution Genotype, Ribotype and Phenotype

- Each cell is not a duality of genotype and phenotype but a trinity made of genotype, phenotype and ribotype.
- The ribotype was defined as the ribonucleoprotein system of the cell, and it was underlined that it represents a new cell category (the ribotype theory).
- 1. Phenotype is the seat of metabolism;
- 2. Genotype the seat of heredity;
- 3. Ribotype is the seat of genetic coding.
- It was proposed that life on earth originated with the ancestors of today's ribotypes.

Barbieri,1981

A ribosome is composed of rRNA and ribosomal proteins known as a ribonucleoprotein.

Ribotyping rRNA-based phylogenetic analyses

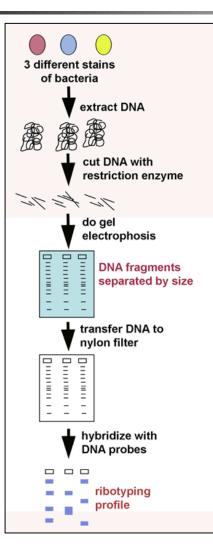

- All bacteria have ribosomal genes, but the exact sequence is unique to each species, serving as a genetic fingerprint.
- Therefore sequencing the particular 16S gene and comparing it to a database would yield identification of the particular species.
- Ribotyping is a molecular technique for bacterial identification that uses information from rRNA-based phylogenetic analyses.

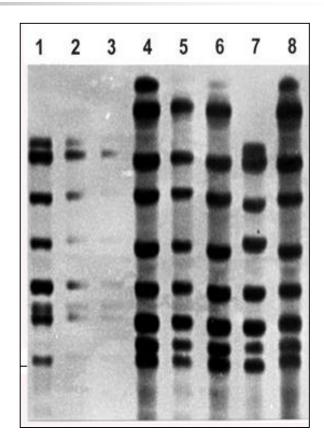
rDNA PCR of the 16S-23S intergenic spacer region, ITS ('ribotyping'). The number of fragments generated by ribotyping is a reflection of the multiplicity of rRNA operons present in a bacterial species.

- Extract the genomic DNA from your bacterial isolate.
- Cut it with a specific restriction enzyme.
- Run the DNA in an agarose gel by electrophoresis.
- DNA fragments are separated by size as they move through the gel.
- Transfer the DNA pieces to a nylon membrane.
- Incubate the nylon membrane with a specific enzyme-linked DNA probe (a DNA fragment that hybridizes to the genes coding for 16S and 23s rRNA).

- Wash the nylon membrane and add the enzyme substrate to produce a chromogenic or fluorescent signal and visualize the pieces of DNA of interest.
- 1. In the case of chromomeric signal the reaction will be seen in the nylon membrane.
- 2. In the case of fluorescent reaction the nylon membrane is coupled with a photographic film and the results are seen on film.

- Genomic DNA encoding the 16S and 16-23S ribosomal RNA molecules is digested by specific restriction enzymes.
- Each restriction enzyme cuts DNA at a specific nucleotide sequence, resulting of fragments of different lengths.
- Different strains of bacteria have the specific "cut-sites".
- Each strain generates a unique pattern of DNA pieces.
- The DNA fragments are transferred onto nylon membranes and hybridized with a labelled 16S or 23S rRNA probe.




Hinf

*Msp*I

GANTC

CCGG

Hybridized with a labelled 16S or 23S rRNA probe.

https://courses.cit.cornell.edu

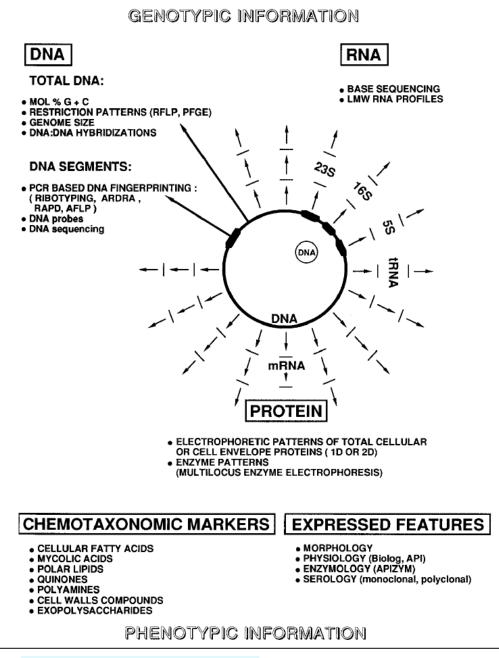
Characteristics used in polyphasic taxonomy

Phenotypic Methods

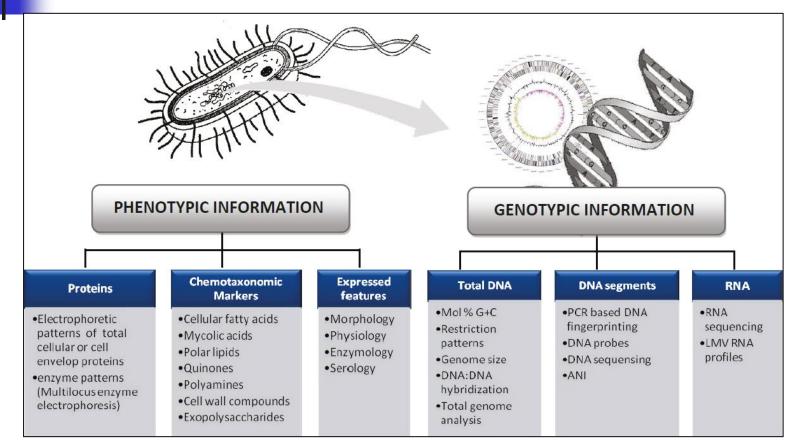
Classical phenotypic analyses

- Numerical analysis
- **Automated systems**
- Genotypic Methods

Determination of the DNA base ratio (moles percent GC) DNA-DNA hybridization (DDH) studies

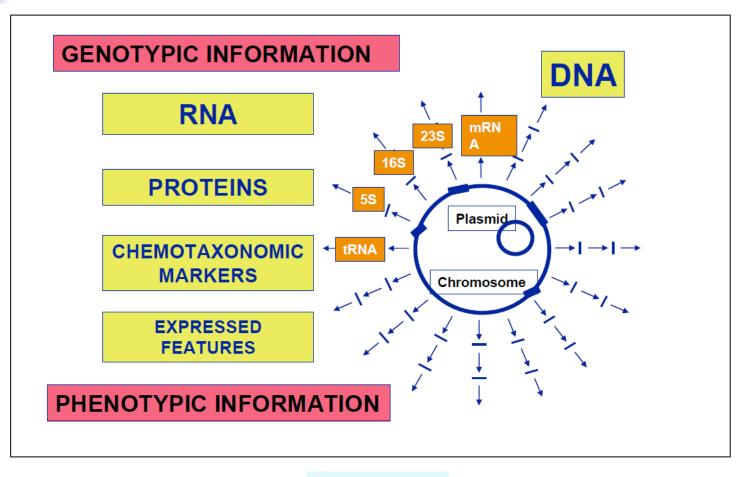

rRNA homology studies (Ribotyping: molecular fingerprinting) DNA-based typing methods

- Typing methods
 - Cell wall composition
 - Cellular fatty acids
 - **Isoprenoid quinones (lipid molecules)**
 - Whole-cell protein analysis
 - **Polyamines**
- Siderotyping is a new determinative tool for accurate identification of pseudomonads at the species level (Meyer *et al.*, 2002).

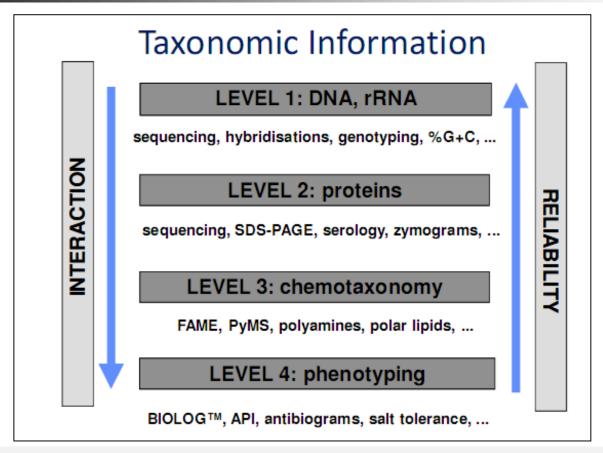

Peter Vandamme, Professor at Universiteit Gent, Belgium.

The seat and the nature of most of the genotypic and phenotypic methods used for monophasic studies or polyphasic comparisons of bacteria.

Vandamme et al.,1996


Schematic overview of various cellular components and techniques used in polyphasic bacterial taxonomy Adapted from Vandamme *et al.*,1996

Average Nucleotide Identity (ANI). A nucleotide is made up of three parts: a phosphate group, a 5carbon sugar, and a nitrogenous base.

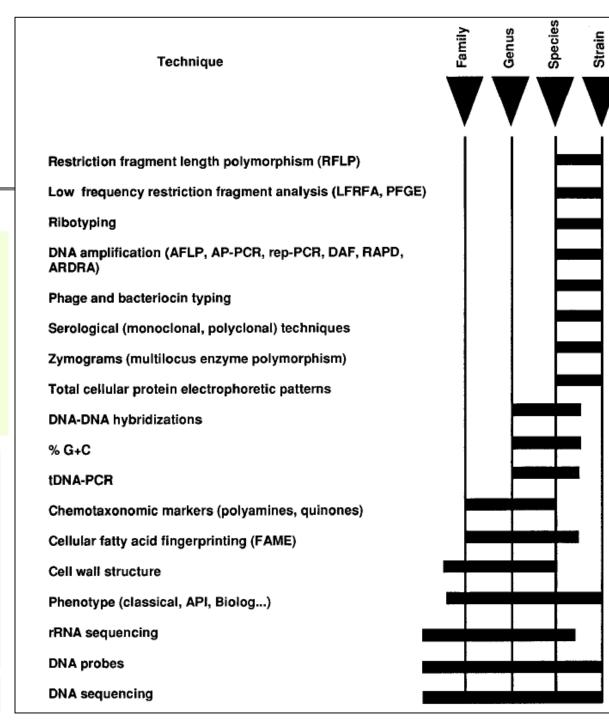

Amoozegar and Mehrshad, 2013

Characteristics used in polyphasic taxonomy

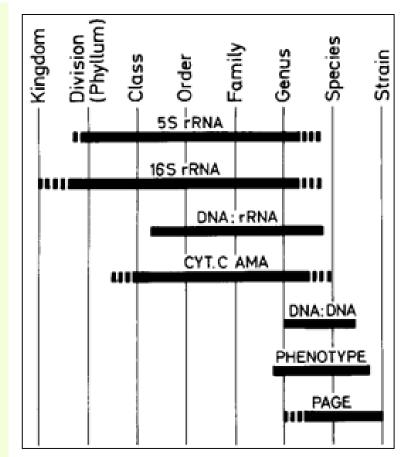
Coenye,2003

Characteristics used in polyphasic taxonomy Interactions and reliability

Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail.


Lucas,2010

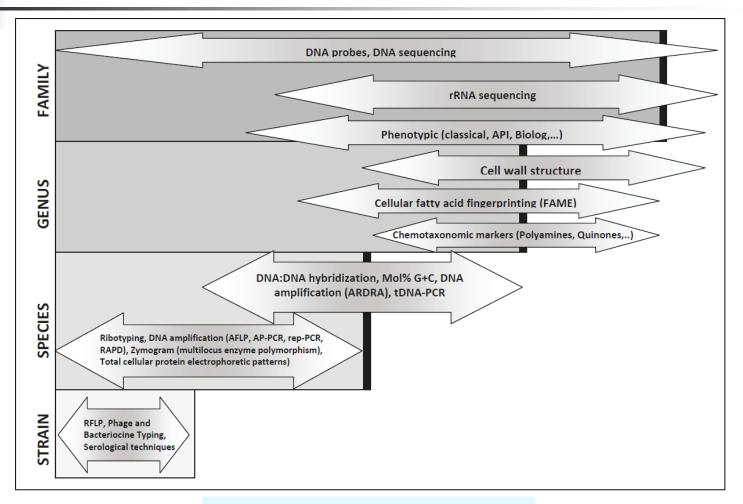
Polyphasic taxonomy: Taxonomic resolution of some of the currently used techniques. Zymograms: In electrophoretic strip (as of starch gel) or a


starch gel) or a representation of it exhibiting the pattern of separated enzymes and especially isoenzymes after electrophoresis.

Vandamme et al.,1996

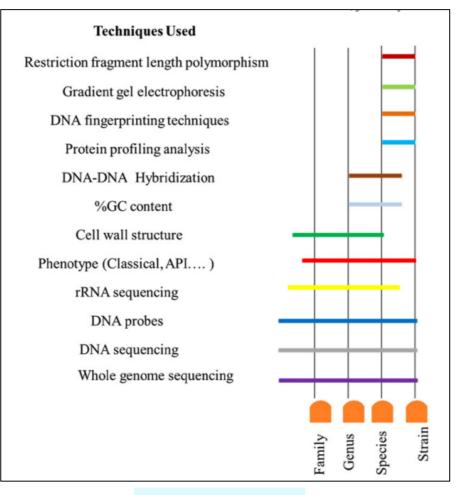
Taxonomic validity range of several methods

- 1. 5S rRNA sequencing; 16S rRNA cataloging is valid up to about a class or a division.
- 2. Complete sequencing extends the validity range to about a kingdom.
- 3. DNA-rRNA hybridization; cytochrome *c* amino acid (CYT.C) sequencing; DNA-DNA hybridization are useful on:
- I. Phylogenetic or taxonomic conclusions,
- II. Numerical analysis of phenotypic features;
- III. Numerical analysis of protein gel electrophoresis (PAGE).



Relative resolution of various fingerprinting and DNA techniques

Family	Genus	Species	Subspecies	Strain			
DNA sequencing							
		16 S rDNA	sequencing)			
		ARDRA)			
		DNA-DNA	reassociation				
		tRNA-PCR					
		ITS-PCR					
		RFLP LFR	FA PFGE				
		Multilocus	Isozyme				
		Whole cell	protein profili	ng			
		AFLP					
		RAPD's A	PPCR				
		rep-PCR					


Rademake and Bruijn

Taxonomic resolution of some of the currently used techniques in bacterial taxonomy Adapted from Vandamme *et al.*,1996

Amoozegar and Mehrshad, 2013

Taxonomic resolutions of the currently used techniques

Das et al.,2014

Formerly known as ABRF News

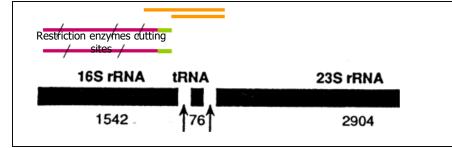
Typing and target characteristics, electrophoresis platforms and references of several typing techniques.


	Characterization of:	Target used for characterization	Electrophoresis platform
AFLP	Whole genome or plasmid	Restriction site and additional nucleotide	Polyacrylamide ^a or agarose
rep-PCR Genomic oligonucleotide fingerprinting	Repetitive element oligonucleotide sequence	Repetitive element oligonucleotide	Agarose or polyacrylamide
ARDRA	Ribosomal gene	Oligonucleotide sequence and restriction site	(MetaPhor) Agarose
ITS-PCR-FLP	Inter-transfer ribosomal gene spacer sequence	Oligonucleotide sequence and fragment length	Agarose or polyacrylamide₌
IGS-PCR-FLP	Inter-ribosomal gene spacer sequence	Oligonucleotide sequence and fragment length	Agarose or polyacrylamide₌
IGS-PCR-RFLP	Inter-ribosomal gene spacer sequence	Oligonucleotide sequence and restriction site	Agarose
T-RFLP	(Ribosomal) gene	Oligonucleotide sequence and restriction site	polyacrylamide _*
SSCP	(Ribosomal) gene	Specific oligonucleotide and total fragment sequence	polyacrylamide _°
T/DGGE	(Ribosomal) gene	Specific oligonucleotide and total fragment sequence	Polyacrylamide
RAPD/AP-PCR/DAF	Whole genome	Repetitive random oligonucleotide sequence	Agarose
PFGE	Whole genome	Low frequency restriction site	Agarose
MLST Plasmid profiling	Several genes Plasmid	DNA sequence Plasmid sizes	DNA sequence Agarose

Osborn and Smith,2005

^aFluorescent labels and capillary electrophoresis can be applied.

Microbial diversity Screen Clones for differences ARDRA is an RFLP on the 16SrDNA amplified by PCR


- ARDRA has been used:
- 1. post-cloning
- 2. pre-cloning
- 3. isolates or communities.
- Procedures:
- Extract DNA from sample;
- PCR Amplification of 16SrDNA;
- Clone all amplicons;
- Screen clones for differences (e.g. ARDRA).

Microbial diversity

Quick Assessment of Diversity "One band = One bug" (?) (little phylogeny information)

- **RISA** (ribosomal intergenic spacer analysis):
 - Often get overlapping bands (on band = > 1 bug)
 - Phylogenetic information limited by 16SrDNA overlap
- ARDRA (amplified ribosomal DNA restriction analysis):
 - ARDRA is an RFLP on the 16SrDNA amplified by PCR.
 - Good for identification of isolates; esp. with multiple restriction enzymes.
 - Too many bands makes it hard to interpret mixed populations.
- T-RFLP (terminal restriction fragment polymorphism):
 - Steps like ARDRA, but terminal 3' end of gene is fluorescent
 - Multiple restriction enz. Give best results; maybe used to query RDP.

Microbial diversity Genotyping of bacterial isolates by ARDRA

- Amplified ribosomal DNA restriction analysis (ARDRA) was performed on the PCR-amplified 16S rDNA products from each of the isolates using three specific restriction *Hha*I, *Afa*I, and *Msp*I.
- Five microliters of each PCR product was digested for 2 h at 37°C with 1.5 U of each restriction endonuclease.
- Aliquots (5 µL) of each digested product were analyzed by gel electrophoresis in an 8% nondenaturing acrylamide gel (acrylamide: N,N'-Methylenebisacrylamide, 29:1) and by silver nitrate staining, as described previously.
- Fragment sizes were estimated using a low range, 50 bp DNA ladder and a final grouping of isolates was performed by a visual comparison of the restriction patterns.

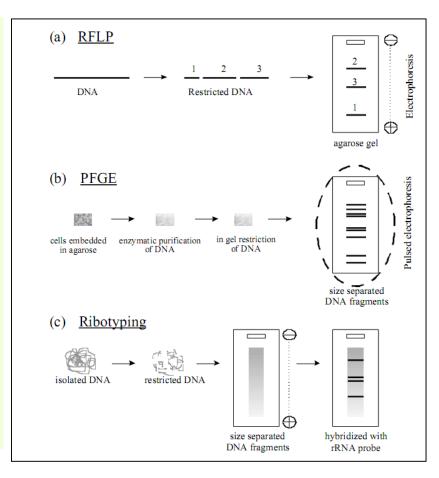
ARDRA

Amplified Ribosomal DNA Restriction Enzyme Analysis *P. tolaasii*

- The high degree of polymorphism cause problems in the identification of the *P. tolaasii*.
- Therefore, DNA samples were isolated from *P. tolaasii* strains and PCR reactions were performed with special primers.
- So called ARDRA was performed with *CfoI*, *Hae*III, *Hinf*I and *Sac*I restriction enzymes, respectively.
- 1. The *Cfo*I *enzyme* provided 4 groups, but
- 2. The Hinf*I* and *Sac*I digestion resulted 8 different patterns.

ARDRA

Amplified Ribosomal DNA Restriction enzyme Analysis *P. tolaasii*

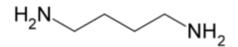

- The ARDRA pattern of the strains of *P. tolaasii*.
- A. Digestion with *Cfo*I enzyme.
- B. Digestion with *Sac*I enzyme.
- The strains in the lines as the following: 1: 6, 2: 7, 3: 8, 4: 29, 5: 17,6: 15, 7: 37, 8: 25, 9: 56.
- M: GeneRuler 100bp DNA Ladder Plus

bp. M 1 2 3 4 5 6 7 8 9 1500-	Pseudomonas strains	CfoI	HaeIII	SacI	Hinf1
500-	6	1	1	1	1
300-222	7	2	2	2	2
200-	8	2	2	2	2
100-	29	2	3	3	3
Α.	17	2	3	4	4
bp. M 1 2 3 4 5 6 7 8 9	15	2	4	5	5
1500-	37	2	4	6	6
500-	25	3	5	7	7
300-	56	4	6	8	8
²⁰⁰⁻ 100- B.			fication of		

Illustration of commonly used fingerprinting techniques RFLP, PFGE and ribotyping

Ribotyping

- DNA is isolated from a cultured isolate, restricted and size separated in an agarose gel.
- The gel is then hybridized with labeled rRNA probe, which binds to fragments containing copies of the rRNA operon.
- Following probe detection, fragments with bound probe are visualised, forming a characteristic RFLP.



O'Sullivan,2000

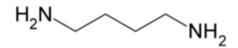
Typing methods Chemotaxonomy

- Many of the cellular compounds which belong to the bacterial phenotype have been used in typing systems to characterize strains at the infraspecific level. e.g.
- 1. Polyamines (a compound containing more than one amino group. Many polyamines function as essential growth factors in microorganisms);
- 2. Xanthomonadins
- 3. Cell wall composition
- 4. Cellular fatty acids.

Typing methods Polyamines (PAs)

putrescine

Considered as a plant hormone but the mechanisms of action of polyamines differ greatly from those of plant hormones


- Polyamine is an organic compound having two or more primary amino groups -NH₂.
- These substances play important roles in both eukaryotic and prokaryotic cells.
- The two most common polyamines found in bacteria are putrescine and spermidine.
- Polyamines present in bacterial nucleoids neutralize negative charges on phosphates (El-Safey, 2011).
- If cellular polyamine synthesis is inhibited, cell growth is stopped or severely retarded.
- They appear to be essential in growth and cell division.

Typing methods Polyamines (PAs)

Considered as a plant hormone but the mechanisms of action of polyamines differ greatly from those of plant hormones

- Polyamines are polycations that interact with negatively charged molecules such as DNA, RNA and proteins.
- PAs have specific and diverse roles in multiple cellular processes, including apoptosis (programmed cell death), cell division and differentiation, differentiation, DNA and protein synthesis, gene expression, signal transduction.
- What foods are high in polyamines?
- Mushrooms, peas, hazelnuts, pistachios, spinach, broccoli, cauliflower and green beans also contain significant amounts of both polyamines. The lowest levels are found in the fruit category.

Typing methods Polyamines (PAs)

putrescine

Considered as a plant hormone but the mechanisms of action of polyamines differ greatly from those of plant hormones

- Apoptosis meaning "dropping off" and refers to the falling of leaves from trees in autumn.
- Apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies.
- However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.

Typing methods Chemotaxonomy respiratory quinones

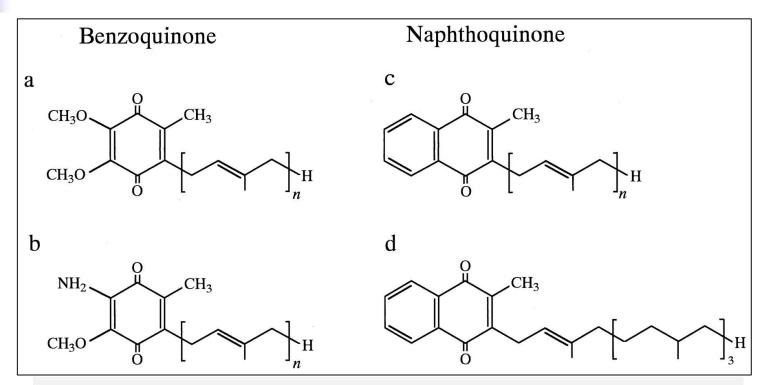
- The quinolones are a family of synthetic broad-spectrum antibacterial drugs.
- Respiratory quinolones are a class of antimicrobials with a high activity against most respiratory pathogens.

Typing methods Isoprenoid quinones Lipid molecules

- Isoprenoid quinones are one of the most important groups of compounds occurring in cytoplasmic membranes of living organisms.
- These Lipid molecules play important roles in electron transport, oxidative phosphorylation, and possibly, active transport.

There is difference between isoprenoid quinone composition (lipid molecules of cytoplasmic membranes) and whole-cell fatty acid profiles. Fatty acids are the major constituents of lipids and lipopolysaccharides and have been used extensively for taxonomic purposes.

Typing methods Isoprenoid quinones Lipid molecules


- Lipid molecules present in all species of respiratory and photosynthetic microorganisms and exhibit marked structural variations depending upon the microbial taxon.
- Taking advantage of this, quinones have been used:
- 1. As chemotaxonomic markers in microbial systematics, but also
- 2. As good measures of microbial populations in the environment in terms of quantity, quality, and activity.

Typing methods Isoprenoid quinones Lipid molecules

- Two major structural groups of bacterial isoprenoid quinones can be recognized:
- 1. Naphthoquinones
- 2. benzoquinones.
- Naphthoquinones can be divided further into two main types on the basis of structural considerations. These are the:
- 1. phylloquinones
- 2. Menaquinones.

Typing methods

Four quinone structural classes found in activated sludge

The large variability of the side chains (differences in length, saturation, and hydrogenation) can be used to characterize bacteria at different taxonomic levels.

Vandamme,2013

Typing methods Isoprenoid quinones Determination of isoprenoid quinones

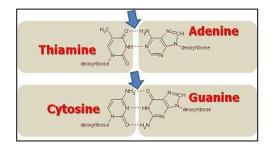
- Cells were hydrolyzed by adding 0.2 ml of 50% aqueous KOH and 3 ml of 1% pyrogallol in methanol and boiling (100°C) for 10 min.
- The cooled hydrolysates were then extracted with ether-hexane (1:1) as previously described.
- Quinones were finally dissolved in methanol and examined by reverse-phase high performance liquid chromatography (HPLC).

- DNA-DNA hybridization (DDH) values have been used by bacterial taxonomists since the 1960s to determine relatedness between strains and are still the most important criterion in the delineation of bacterial species.
- Commonly, a species is defined as a set of strains with approximately 70% or greater DNA-DNA relatedness or 97% 16S rRNA identity.

- DNA-DNA hybridization (DDH) is technically challenging, labor intensive and a time consuming method.
- The DDH values lower than 50% cannot be used for estimating the genetic relatedness between distantly related species.
- In case of 16S rRNA gene sequence analysis, unlike DDH, the information is archival and can be used for various analyses.

- Though the 16S rRNA gene sequence is capable of classifying a genome to the family or genus level, it is not very efficient in the differentiation of species.
- For example, organisms with greater than 97% sequence identity may still belong to different species.

- Multi-locus sequence analysis (MLSA) of housekeeping genes is another molecular method which has recently become popular for investigating taxonomic relationships.
- MLSA of selected housekeeping genes accurately predicts the relationships between closely related genomes without the need for genome-wide comparison.
- However, the main limitation in MLSA is the dependence on the choice of housekeeping genes which varies between different taxa.


DNA–DNA hybridization (DDH) Nucleic acid base composition G+C content

- The G/C content, or ratio, is the percentage of nitrogenous bases on a DNA molecule which are either guanine or cytosine.
- In PCR procedures, the GC content of primers are used to determine their annealing temperature to template DNA.
- A high GC content level indicates a higher melting temperature as it takes more energy to break three hydrogen bonds versus two.

DNA–DNA hybridization (DDH) Nucleic acid base composition G+C content

Here is a sample calculation.

$$\frac{G+C}{A+T+G+C} \times 100$$

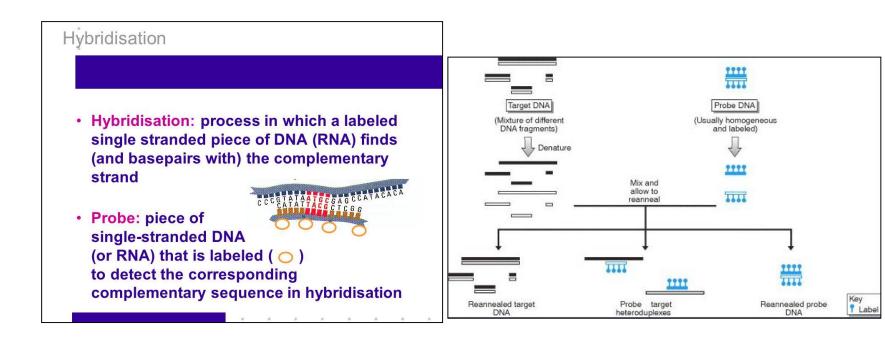
- You have a fragment of DNA with the following structure: AAGGTATCGGTATCGAAATT
- Count up the bases and plug into the formula:

7 As, 6 Ts, 5 Gs and 2 Cs

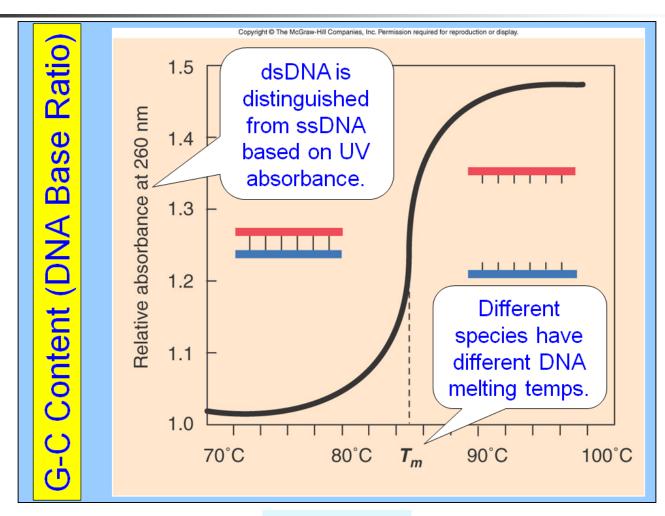
5+ 2/7+6+5+2 x 100= 7/20 x 100= 35% G/C Content.

Count up the bases and plug into the formula: 7 As, 6 Ts, 5 Gs and 2 Cs		
5+2/7+6+5+2 * 100 = 7/20 * 100 =		
35% G/C Content		

DNA–DNA hybridization (DDH) Nucleic acid base composition G+C content

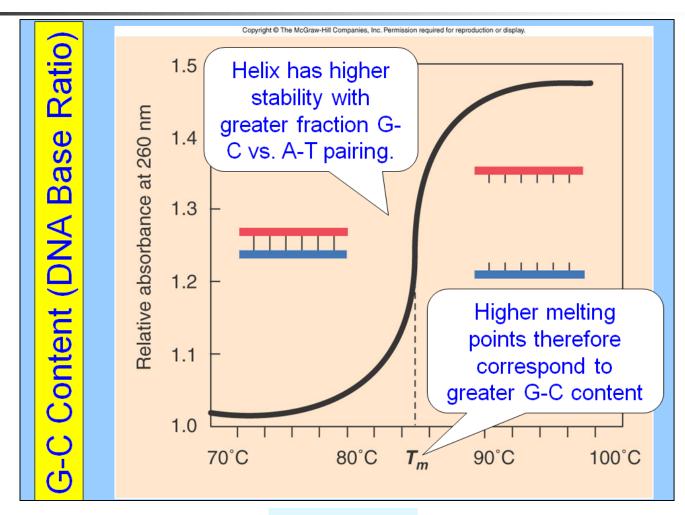

Mol%
$$(G + C) = \frac{G + C}{G + C + A + T} \times 100\%$$

- Estimated by determining the melting temperature (Tm) of the DNA.
- Higher G+C gives a higher melting temperature.
- Closely related organisms should have similar G+C ratio.
- e.g.
- *Erwinia* GC% 50-58
- Agrobacterium GC% 57-63
- Pseudomonas GC% 58-70
- *Bacillus* GC% 30-70
- *Clostridim* GC% 22-55

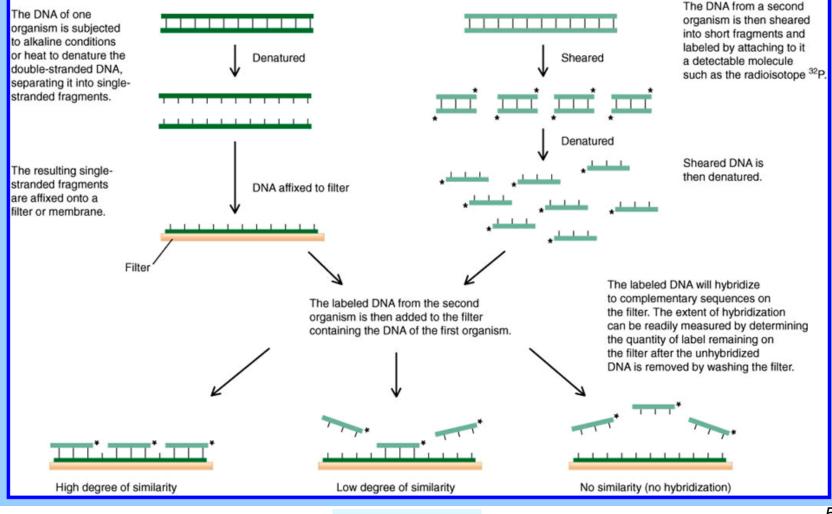

DNA-DNA hybridization DNA-DNA reassociation

- DNA of unknown is labeled (growth in 3 H thymidine; nick translation, nonradioactive methods),
- 2. Denatured (heat),
- 3. Reacted with denatured test DNA bound to a nitrocellulose filter, washed, amount of radioactivity retained on filter reflects % homology.
- The more closely related the strains are, the greater the homology.

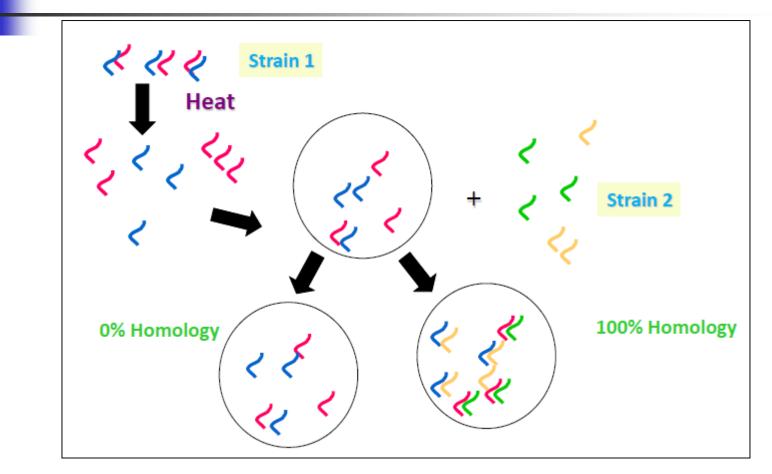
DNA-DNA hybridization DNA-DNA reassociation



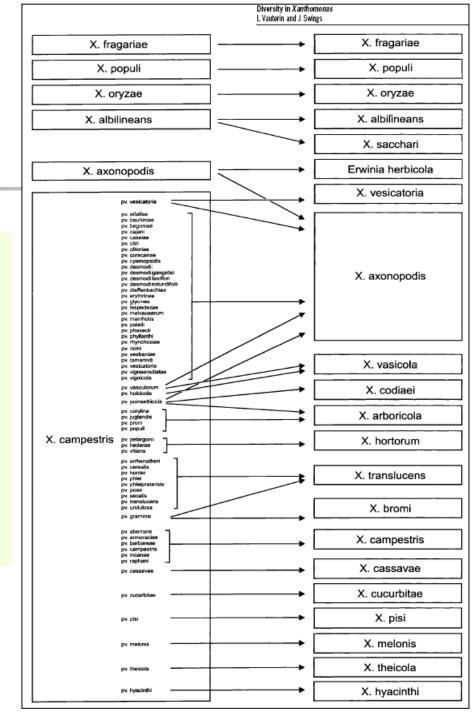
Nucleic acid base composition G+C content


Abedon,2011

Nucleic acid base composition G+C content


DNA-DNA Hybridization

Abedon,2011


DNA-DNA hybridization Typing via RFLP analysis

Classification Based on DNA homology

Schematic representation of the rearrangements proposed within the genus *Xanthomonas*, resulting from a global taxonomic study of more than 1000 strains and DNA hybridization experiments between 183 selected strains.

Vauterin and Swings, 1997

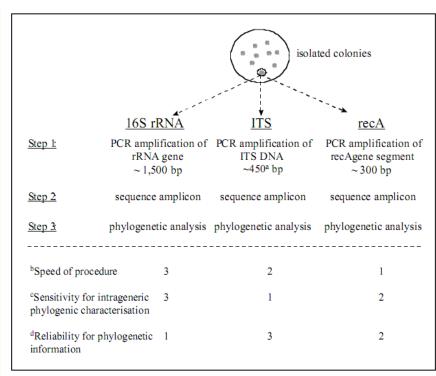
Classification of *Acidovorax* Based on DNA-DNA hybridization

- Native DNA of two Acidovorax valerianellae causal agent of lamb's lettuce strains, CFBP 4730T and CFBP 4723, was labelled with tritiated nucleotides (³H nucleotides) by nicktranslation.
- The S1 nuclease/trichloroacetic acid method was used as indicated by Gardan *et al.* 2000.
- The reassociation temperature was 70° C.
- Levels of DNA relatedness among *Acidovorax valerianellae* and related strains hybridization was determined at 70° C.
- ND, Not determined.

Source of unlabelled DNA	Relative binding with labelled DNA from:		
	CFBP 4730 ^T	CFBP 4723	
A. valerianellae sp. nov.			
CFBP 4730 ^T	100	91	
CFBP 4720	100	100	
CFBP 4721	84	100	
CFBP 4723	100	100	
CFBP 4725	100	98	
CFBP 4726	95	99	
CFBP 4728	89	88	
CFBP 4731	100	100	
CFBP 4732	100	93	
CFBP 4733	92	89	
CFBP 4734	100	100	
A. anthurii CFBP 3232 ^T	24	ND	
A. avenae subsp. avenae			
CFBP 2425 ^T	19	ND	
CFBP 1201	23	ND	
A. avenae subsp. cattleyae CFBP 2423 ^T	35	ND	
A. avenae subsp. citrulli CFBP 4459 ^T	29	ND	
A. konjaci CFBP 4460 ^T	15	ND	

DNA-RNA homology More sensitive method

- 1. DNA homology does not go much beyond the genus or family level.
- 2. RNA (esp. rRNA) does.
- Same principles as DNA homology but hybridization is between DNA and rRNA.
- Three types of RNA: mRNA, tRNA, rRNA.
- More sensitive can pick homologies not detected by DNA-DNA hybridization.
- Because
- 1. rRNA is highly conserved critical for protein synthesis.
- 2. rRNA constitutes small % of total genetic material therefore, examining specific conserved genes, not whole chromosome that is less conserved.


El-Safey,2011

Specific genes Phylogenies based on specific genes

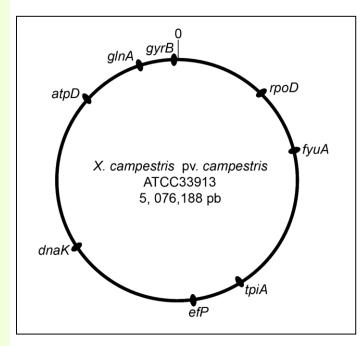
- There are several important requirements if we wish to use a gene phylogeny to infer organismal relationships:
- 1. The gene must be present in all organisms of interest. Examples include genes whose products function in replication, transcription, or translation.
- 2. The gene can not be subject to transfer between species (lateral transfer).
- 3. The gene must display an appropriate level of sequence conservation for the divergences of interest.
- 4. The gene must be sufficiently large to contain a record of the historical information.

Specific genes Phylogenies based on specific genes

- Comparison of the three sequence-based typing and phylogenetic characterization approaches.
- The three sequences which have been used are:
- 1. 16S rRNA;
- 2. Sequence between the 16S and 23S rRNA genes, termed the internal transcribed spacer (ITS); and
- 3. An internal portion of the recombinase *recA* gene.

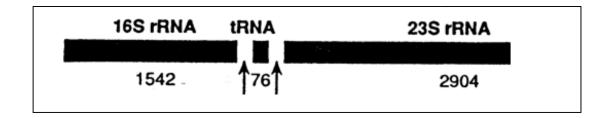
An amplicon is a piece of DNA or RNA that is the source and/or product of amplification or replication events.

Specific genes


Housekeeping (metabolic/essential)genes Phylogenetic markers

- Molecular techniques in a comparative analysis of housekeeping genes such as *oprI*, *rpoD*, *gyrA*, *gyrB*, etc. but also macromolecules like 16S rRNA.
- A housekeeping gene is a gene that codes for proteins needed all the time.
- Most investigators suggest that the presence of the almost universally conserved essential or housekeeping genes defines a chromosome.
- These could include:
- 1. 16S rRNA genes,
- 2. Heat-shock proteins (HSPs) such as *groE*, *dnaK*, *gyrB* and *rpoD*.

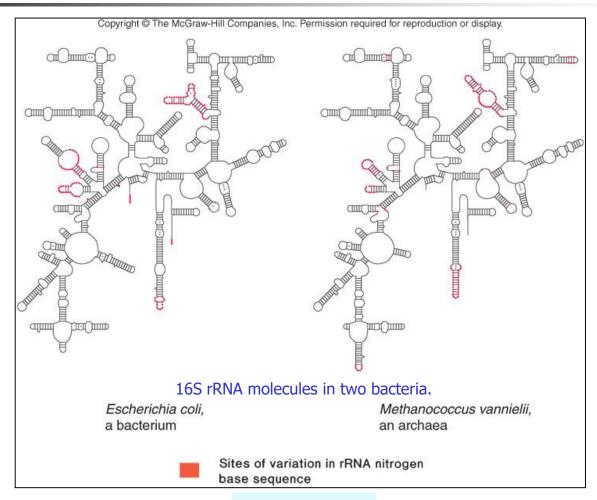
Heat shock proteins (HSP) are expressed in response to various biological stresses, including heat, high pressures, and toxic compounds. It is also one of the most abundant cellular proteins found under non-stress conditions.


Specific genes Housekeeping (metabolic/essential) genes *X. c.* pv. *campestris*

- Schematic of the relative location of the seven housekeeping genes and the *fyuA* gene used in this study on a schematic chromosomal map of *X. c.* pv. *campestris* strain ATCC 33913.
- Heat-shock proteins:
- gyrB (DNA gyrase subunit B);
- *rpoD* (RNA polymerase sigma-70 factor);
- *dnaK* (heat shock protein 70, molecular chaperone DnaK);
- Other proteins:
- *atpD* (ATP synthase beta chain);
- *efP* (elongation factor P);
- glnA (glutamine synthetase I);
- *tpiA* (triosephosphate isomerase) and
- *fyuA* (TonB-dependent receptor).

Specific genes Signature sequences 165 rDNA sequences

 Particular groups of microbes will possess unique nucleotides at specific locations in 16S rRNA molecules.


Chester R. Cooper, Jr., 2004;...

Specific genes

16S rDNA sequences (signature sequences) The first-line molecular tool

- Knowledge of bacterial diversity obtained after more than 100 years of pure culture study is incomplete, and very few of the total number of microbial species are in culture (Torsvik *et al.*,1995).
- However, phenotypic methods are restricted to only those bacteria that can be isolated and cultured.
- So far, a small portion of all prokaryotes has been cultivated, and the majority of soil bacteria observed microscopically can not be cultivated.
- Since the mid-1980s, the use of small-subunit ribosomal ribonucleic acid (SSU rRNA) based techniques has facilitated a culture independent approach of investigating microorganisms as they occur in nature.

Specific genes The conserved macromolecule 16S rDNA Red color: site of variation in rRNA nitrogen base sequence

Powers,2010

rRNA sequence 16S rRNA sequence analysis Molecular clock

- Differences in the nucleotide sequence are used to classify prokaryotes.
- The DNA sequence that encodes rRNA is highly conserved among bacteria of common ancestry.
- Sequence DNA encoding rRNA of different isolates, determine % identity, have a molecular chronometers (molecular clock)—an accurate determination of phylogenetic distance.
- Phylogenetic trees are now established on basis of rRNA sequence.

Specific genes

16S rDNA sequences (signature sequences) Less than 97% identical usually hybridize less than 70%

- Prokaryote species are most precisely defined on the basis of their 16S rRNA sequences.
- Such a convention is supported in that DNA from two bacteria whose 16S rRNA sequences are less than 97% identical usually hybridize less than 70%.
- When to claim discovery of a new genus using nucleic acid data is on somewhat shakier ground than that for species.
- Groups of sufficiently similar species make up a genus and a collection of sufficiently similar genera make up a family.

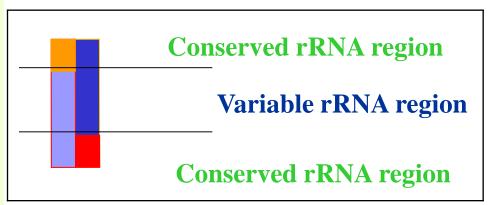
Specific genes 16S rDNA sequences (signature sequences)

- The rRNA sequences were shown to be a very useful molecular marker for phylogenetic analyses.
- Among the three rRNA molecules, 16S rRNA has been the most widely studied.
- Thus most information is available for this molecule.
- This information is provided in the description of most of the newly classified bacterial species.
- It is also becoming increasingly popular to propose new bacterial species using data generated from 16S rRNA sequencing studies.

Ribosomal RNAs

A powerful evolutionary and investigative biomarkers

- Ribosomal RNA and the corresponding genes (rrn) are now widely used as powerful evolutionary and investigative biomarkers for the following reasons (Olsen et al., 1986):
- Ribosomal RNAs are essential to protein synthesis, and therefore are ubiquitous to all organisms, and structurally and functionally conserved;
- ii. Ribosomal RNAs are readily isolated and identified;
- iii. They contain variable and highly conserved regions in both primary and secondary structure; and
- iv. They appear to change in sequence very slowly, and they do not exhibit horizontal gene transfer found with many other prokaryotic genes; therefore relationships between rRNAs reflect evolutionary relationships.

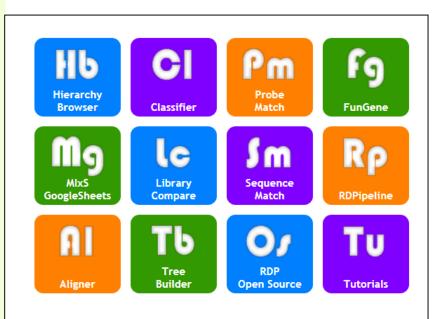

16S ribosomal DNA

A set of 16S rDNA PCR primers for exploring bacterial diversity

- Most of these new methods are based on sequences of the 16S rRNA gene, a gene encoding a molecule of RNA used in bacterial and archaeal ribosomes.
- The 16S rRNA gene is approximately 1500 bases in length and contains regions that are:
- 1. Highly 'conserved' (i.e., have the same sequence in all bacteria and archaea), and
- 2. Highly 'variable' (i.e., have sequences that are unique at the genus or species level).
- Thus the conserved regions of the gene can be used to bind primers for PCR and sequencing, and the variable regions to determine the identity of the organism.

Discovering new species Based on ribosomal DNA genes

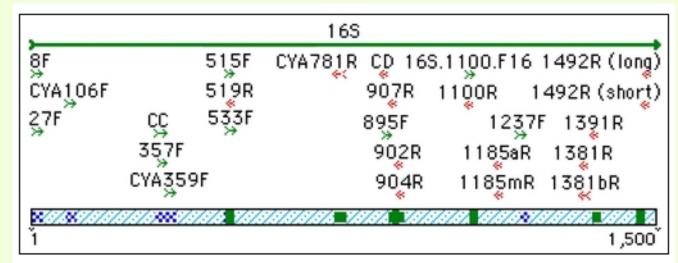
- Recover DNA from different environments;
- Amplify the ribosomal DNA genes (rDNAs) using relatively conserved primers.
- Sequence the variable region inside, and compare sequences with web based Ribosomal Database Project – RDP.


✓ Amplify all bacterial DNA;✓ Assess biodiversity of variable region.

Web based Ribosomal Database Project - RDP Based on ribosomal DNA genes

- The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including:
- Online data analysis, and
- Aligned and annotated (explain) bacterial and archaeal small-subunit 16S rRNA sequences.
- To date, 3,356,809 16S rRNAs :: 125,525 Fungal 28S rRNAs have been made available for comparison.
- As these databases rapidly expand, they constantly improve the process of matching new sequences to known microorganisms.

Web based Ribosomal Database Project - RDP Based on ribosomal DNA genes


- RDP provides qualitycontrolled, aligned and annotated Bacterial and Archaeal 16S rRNA sequences, and Fungal 28S rRNA sequences, and a suite of analysis tools to the scientific community.
- New to RDP release 11:
- Most of the RDP tools are now available as open source packages for users to incorporate in their local workflow.

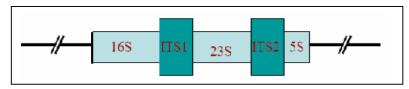
To date, 3,356,809 16S rRNAs :: 125,525 Fungal 28S rRNAs have been made available for comparison.

Primer map for the 16S SSU rRNA gene A set of 16S rRNA gene primers

- The 16S rRNA gene is approximately 1500 bases in length.
- The primer map for the 16S SSU rRNA gene includes both universal (8F, 27F,515F, 907R, 1492R...) and specific primers (902R,904R,...).

rRNA sequence 23S rRNA gene sequence analysis Another molecular clock

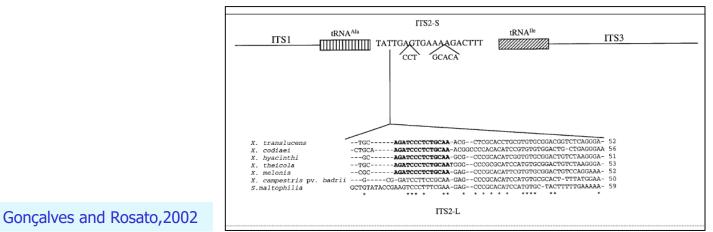
- The 23S rRNA gene like 16S rRNA most widely used molecular chronometers for:
- 1. Inferring microbial phylogeny, and
- Have been instrumental in developing a comprehensive view of microbial phylogeny and systematics.


Specific genes 16S-23S rDNA intergenic spacer (ITS)

- Another molecular phylogenetic marker, the 16S-23S rDNA intergenic spacer (ITS), for distinguishing between these species.
- PCR-RFLP of ITS sequences from several bacterial species e.g. Xanthomonas species has established a consistent degree of variation among them.
- ITS sequences are located between the 16S and 23S ribosomal subunits and, in most Gram-negative bacteria, contain a tRNA^{Ala} and a tRNA^{Ile} in their sequence.
- ITS sequences have been under less intensive selection pressure and are considered to be 10 times as variable as 16S rDNA.

tRNA^{Ile} :A transfer RNA which is specific for carrying isoleucine to sites on the ribosomes in preparation for protein synthesis.

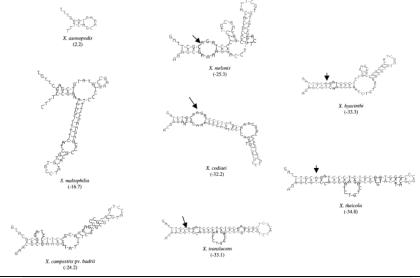
Specific genes Based on 16S-23S rDNA ITS


- Several other criteria have also been applied for differentiation at the species, pathovar or strain levels.
- E.g.
- All strains within the genus Xanthomonas that showed 70% or more DNA–DNA homology exhibited 100% 16S rDNA sequence similarity.
- Better discrimination was obtained by analysis of the 16S-23S rDNA intergenic spacer (ITS) sequence, which showed approximately ninefold higher diversity than 16S rDNA.

Genomic structure of rRNA gene complex in prokaryotes. Internal Transcribe Spacers (ITS) are highly variable regions within the rRNA gene complex and are typically used for identification of closely related bacterial species.


Overall structure of the 16S-23S rDNA ITS *Xanthomonas*

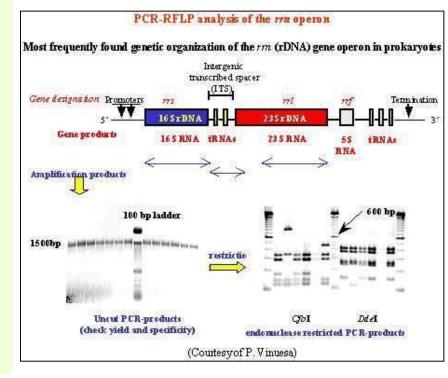
- These tRNAs were highly conserved and divided the ITS sequence into three regions (ITS1, ITS2 and ITS3).
- Conserved nucleotide blocks are indicated in bold; consensus nucleotides are indicated by asterisks.
- Major differences in size were found in the ITS2 region.
- Most Xanthomonas species had a shorter sequence nt (named ITS2-S), but five species exhibited a longer sequence, of 78-85 bases (ITS2-L) caused either by:
- The addition of a long stretch of 51-56 nt and two smaller (CCT and GCACA) sequences, or by
- The loss of these sequences from the other species.



Putative secondary structures of ITS2 Xanthomonads Hairpin structure

- Although ITS2-S was a shorter sequence, formation of a small secondary hairpin structure (stem-loop) could be predicted.
- Stem-loop intramolecular base pairing is a pattern that can occur in singlestranded DNA or, more commonly, in RNA (Wikpedia,2012).

An example of an RNA stemloop(hairpin or hairpin loop).

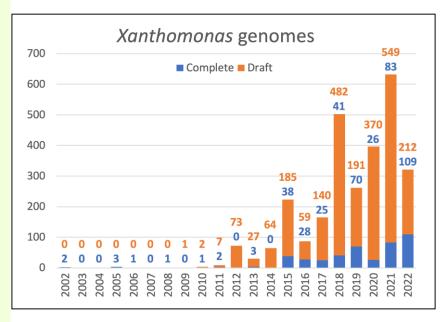


Arrows refer to 5 'end of the conserved 14-nt block). Values in parentheses indicate free energy (kcal mol⁻¹).

Gonçalves and Rosato, 2002

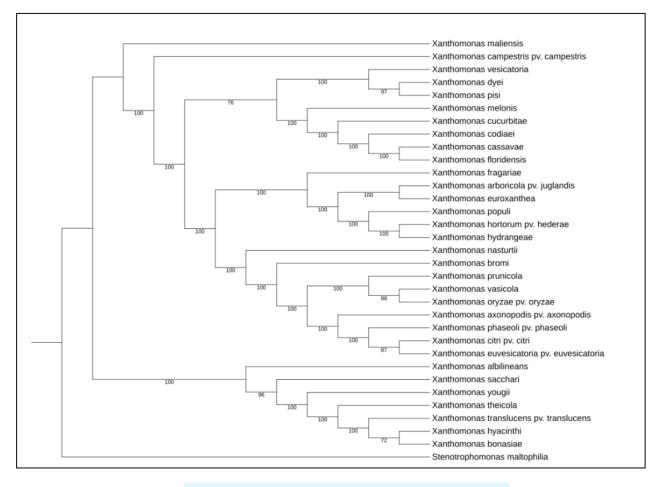
Specific genes 16S-23S rDNA intergenic spacer (ITS)

- RFLP analysis is discriminative at low taxonomic level, often strain level and is now often combined with PCR, e.g. digestion after PCR of the only some loci e.g. 16S rRNA gene (Coenye et al.,2001).
- PCR-RFLP is the faster and easer way method.


rrs" genes encode 16S rRNAs,"*rrl*" genes encode 23S rRNAs, and "*rrf*" genes encode 5S rRNAs. The rrf, rrs and rrl rRNA genes encode for the structural rRNA molecules required for ribosome assembly and function (5S, 16S and 23S rRNAs, respectively).

Specific genes Based on Length and GC content of ITS sequences from *Xanthomonas* species

Strain	Spacer length (bp)				G+C content (mol%)
	ITS1	ITS2	ITS3	Total	
X. albilineans ICMP 196	106	14	223	497	53.50
X. arboricola pv. juglandis ICMP 35^{T}	109	19	226	507	51.08
X. axonopodis pv. axonopodis LMG 538^{T}	113	18	232	519	51.63
X. axonopodis pv. passiflorae ICMP 3151 ^P	113	18	229	507	53.06
X. bromi LMG 947^{T}	112	19	228	510	51.96
X. campestris pv. campestris LMG 568^{T}	112	19	225	509	50.69
X. cassavae LMG 673^{T}	113	19	228	513	51.66
X. codiaei LMG 8678 ^T	113	79	228	578	5 4 ·30
X. cucurbitae LMG 690^{T}	110	19	219	501	52.49
X. fragariae LMG 708 ^T	114	19	226	512	51.40
X. hortorum pv. hederae LMG 733^{T}	113	19	226	510	51.17
X. hyacinthi LMG 739 ^T	103	75	166	493	55.57
X. melonis LMG 8670^{T}	112	75	230	569	53.08
X. pisi LMG 847 ^T	110	19	227	510	50.39
X. sacchari LMG 471^{T}	106	15	218	492	53.05
X. theicola LMG 8684^{T}	105	77	208	541	57.11
X. translucens pv. translucens LMG 876 ^T	103	76	208	540	55.37
X. vasicola pv. holcicola LMG 736 ^T	113	19	227	510	50.98


- Celebrating the 20th anniversary of the first Xanthomonas genome sequences— how genomics revolutionized taxonomy, provided:
- 1. insight into the emergence of pathogenic bacteria,
- 2. enabled new fundamental discoveries, and
- helped developing novel control measures a perspective from the French network on Xanthomonads.

- NCBI Xanthomonas genome statistics (as of 13 July 2023).
 Xanthomonas genome assembly
- metadata were extracted from NCBI GenBank at <u>https://www.ncbi.nlm.nih.gov/datas</u> <u>ets/genome/?taxon=338</u>.
- GenBank assembly levels 'Contig', 'Scaffold' and 'Chromosome' were considered together as Draft level.
- The complete list of genomes and relevant metadata are available in Supplementary Table S1.

- Phylogenetic tree of the 32 valid species of Xanthomonas provided after TYGS analysis (Meier-Kolthoff et al., 2022).
- Tree inferred with FastME 2.1.6.1 (Lefort *et al.*, 2015) from GBDP distances calculated from genome sequences retrieved from Genbank.
- The branch lengths are scaled in terms of GBDP distance formula d5.
- The numbers on branches are GBDP pseudo-bootstrap support values > 70% from 100 replications, with an average branch support of 97.2% (Farris, 1972).
- The Newick file was edited in iTOL (https://itol.embl.de/) and rooted on the outgroup *Stenotrophomonas maltophilia*.
- The complete list of genomes and GenBank Assembly accession numbers are available in Supplementary Table S2.

- Phylogenetic tree of the 32 valid species of Xanthomonas provided after TYGS analysis (Meier-Kolthoff et al., 2022).
- Tree inferred with FastME 2.1.6.1 (Lefort *et al.*, 2015) from GBDP distances calculated from genome sequences retrieved from Genbank.
- The branch lengths are scaled in terms of GBDP distance formula d5.
- The numbers on branches are GBDP pseudo-bootstrap support values > 70% from 100 replications, with an average branch support of 97.2% (Farris, 1972).
- The Newick file was edited in iTOL (https://itol.embl.de/) and rooted on the outgroup *Stenotrophomonas maltophilia*.
- The complete list of genomes and GenBank Assembly accession numbers are available in Supplementary Table S2.

Koebnik and Cesbron et al., 2024

Polyphasic taxonomy approach Protein sequences

- DNA sequences can potentially possess more information than protein sequence.
- Protein sequences, on the other hand, are the functional units (e.g. enzymes, transcription factors, receptors) upon which selection can act.

Polyphasic taxonomy approach Protein sequences

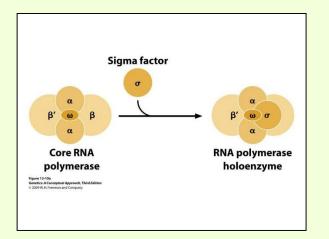
- Although rRNAs have been extremely useful in unravelling (solving) the phylogenetic relationships of organisms, certain problems cannot be solved.
- A valuable alternative would be the use of proteincoding sequences for the construction of phylogenetic trees and species delineation.
- Fortunately during the last few years, investigators have analyzed an increasing number of protein sequences from Archaea, Bacteria and Eukarya.
- e.g. heatshock (HSP70) proteins, chaperonins, etc.

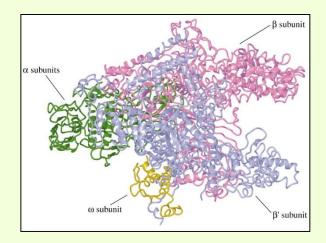
Polyphasic approach Ribosomal RNA or protein sequences for phylogenetic inference?

Ribosomal RNA trees

 Comparative analyses of rRNA sequences, initiated in the 1970s, suggest that the living world is divided into three domains: Eucarya, Archaea, and Bacteria.

Protein trees


- Recently protein-coding genes were used for phylogenetic analyses.
- The entire sequence of the 16S rRNA (1,500 bp) or rpoB gene (4,000 to 4,500 bp) containing <1% undetermined positions would be required for the description of a new taxon.


Polyphasic taxonomy approach Based on gyrB, rpoD, Irp, recA genes

- Based on new molecular markers such as gyrB, rpoD (RNA polymerase sigma-70 factor), Irp, recA sequences and application of PCR-RFLP technique, bacterial classification, identification and detection systems were obtained for:
- Pseudomonas,
- Actinomyces,
- Xylella fastidiosa,
- etc.
- These markers can be very useful in microbial ecology and other fields of bacteriology and improve the reliability of the phylogenetic trees.

Polyphasic approach Based on *RpoB*, *gyrB* sequencing and ribotyping

- 1. RpoB, RpoD and RpoS
- 2. GyrA and B sequencing, and
- 3. Ribotyping.
- Are very useful for species differentiation within *Pseudomonas* and other genera.

Universal and specific primers used to amplify gyrB, nifD, fusA, rpoB and recA gene fragments Locations refer to the *Escherichia coli* numbering system

rimer pair* Primer sequences (5'–3')			
fusA primers			
EF-GF/EF-GR ^a	ACIATGGATTGGATGGADCA/TTCIACTTTCATCATIGGTTC	360-1420	
EF-G30F/EF-G510R ^b	GTGCAGAMTCTICTTGAT/TAATGCCCAGCTTTTCCTGGTC	30-510	
gyrB primers			
GYR48F/GYR1010R ^b	GACGATGATCCGGTGGTAGC/CGATGATACCATCTTCGAGAC	48-1010	
GYR130F/GYR1130R ^b	ATCTCCTGGGAGGAGAGCATC/CTGGAGCTGGAGATTCGCCG	130-1130	
GYRBF/GYRBR ^a	CATCATATGGTNTGGGAGATWGTNGATAAT/CATTTTGTCGAAICKIGCTTTTTCIACGTT	100-1180	
GYR838F/GYR1541R ^b	GGGAAGGTGTACCGCCAGT/GAGGGTGGAACCCACTTGG	838-1541	
nifD primers			
NIFDF/NIFDR ^a	GATTTTCADGADAADGATATT/CCAIGGIATICCDTATTTTC	405-963	
NIFDF2/NIFDR2 ^b	CAGGAAAAIGATATTGTCTACGG/TAGTCGTCCTIGTGGGCGAACTCGTA	180-987	
recA primers			
RECAF/RECAR ^a	TGTGCITTTATWGATGCIGAGCATGC/CCCATGTCICCTTCKATTTCIGCTTT	21-618	
REC258F/REC858R ^c	AAGACGGACGACCTGCTCG/TGAGGAAAAGGCGGGAATTT	258-858	
RECA11F/RECA479R ^b	CATCTGGCAAGACTACCCTG/GGATGTCCATGCGCACGAAG	11-479	
RECA11F/RECA560R ^b	CATCTGGCAAGACTACCCTGG/TGCGACTTTGTTATTAACGACCTT	11-560	
RECA50F/RECA563R ^b	AGCCTTGGAAATTGCCGAG/TCCGCCGTAGGAGAACCAG	50-563	
REC300F/REC630R ^b	TGTTTGTTGATGGCCGAGCA/GGTTGCCGAACATGACACCGAT	300-630	
REC300F/REC910R ^b	TGTTTGTTGATGGCCGAGCA/CCCGCCGTAGGAGAAACCAGGC	300-910	
rpoB primers			
RPOBF/RPOBR ^a	CAGTTHATGGATCAG/GTTHTGNCDTTGCATGTT	117-642	
RPOBF2/RPOBR2 ^b	ACTCGTGAGCGTGCTGGTTTT/ATCAAAGCCCGGTGAGCAT	9-636	
RPO216F/RPO666R ^b	CAGGAACGGGATGAGCGAT/CTCCGAGGTTACCCACAAGC	216-666	
RPO175F/RPO800R ^b	ATGTTCGACCCCATGAGTGC/GAGCGGATGAGTCTCCAGGA	175-800	
RPO310F/RPO940R ^b	GAGCGSATGAGTCTSCAGGA/CITTGCATGTTSGAGCCCAT	310-940	

*Amplification parameters: *a*, 92–94 °C for 5 min, 20 cycles of 92–94 °C for 1 min, 41–55 °C for 1·5–3 min (-0.5 °C per cycle) and 70–71 °C for 1·5–3 min and then 20 cycles of 92–94 °C for 1 min, 38–57 °C for 1–1·5 min and 71–72 °C for 1·5 min, followed by 71 °C for 10 min; *b*, 94 °C for 5 min, 35 cycles of 94 °C for 45–60 s, 47–60 °C for 1–1·5 min and 72 °C for 1–1·5 min; followed by 72 °C for 10 min; *c*, 94 °C for 5 min, 10 cycles of 92 °C for 45 s, 55 °C for 1·5 min (-0.2 °C per cycle) and 72 °C for 1·5 min, 20 cycles of 94 °C for 45 s, 58 °C for 1 min and 72 °C for 1 min, followed by 72 °C for 10 min;

Holmes et al.,2004

Polyphasic approach Based on *gyrB* and *rpoD* genes *Pseudomonas*

- Analysis based on the combination of gyrB and rpoD sequences yielded better resolution than 16S rRNA and resulted into four major clusters viz.:
- Cluster I (*P. fluorescenes*)
- Cluster 11 (*P. putida*, *P. plecoglossicida*),
- Cluster I11 (*P. pseudoalcaligenes*), and
- Cluster IV (*P. aeruginosa*).
- This may be due to the high evolutionary rate of protein coding sequences, gyrB and rpoD (Yainamoto and Harayaina, 1988; Yamamoto et al., 2000).

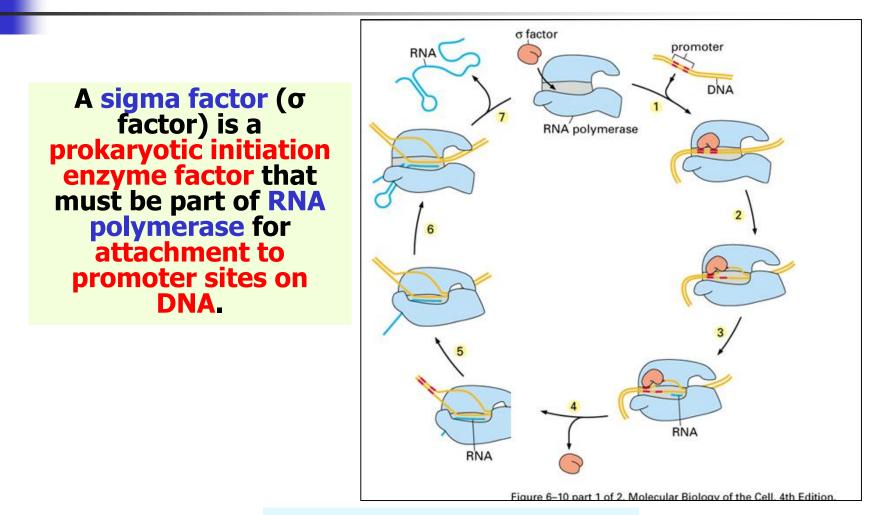
Viz: It is used as a synonym for "namely", "that is to say", "to wit", "which is", or "as follows".

Polyphasic taxonomy approach 1. Based on *rpo* genes

- RNA polymerases "transcribe" the genetic information on DNA into RNA strands.
- For a long time, *E. coli* was thought to contain just a single RNA polymerase.
- RNA polymerase is a complex enzyme consisting of at least six non-identical subunits such as α, β, β' and σ.
- The genetic loci coding for the subunits, namely *rpo*A
 (*a*), *rpo*B (β), *rpo*C (β') and *rpo*D (σ).

Housekeeping sigma factors *E. coli* sigma factors

- σ70 (RpoD)- The "housekeeping" sigma factor, transcribes most genes in growing cells.
- σ38 (RpoS)- The starvation/stationary phase sigma factor
- σ28 (RpoF)- The flagellar sigma factor
- σ32 (RpoH)- The heat shock sigma factor
- σ24 (RpoE)- The extracytoplasmic stress sigma factor
- **σ54 (RpoN)** The nitrogen-limitation sigma factor
- σ19 (FecI)- The ferric citrate sigma factor
- All sigma factors are distinguished by their characteristic molecular weights.
- For example, σ⁷⁰ refers to the sigma factor of RNA polymerase in *E. coli* with a molecular weight of 70 kDa.


Sigma factor (σ factor) is a prokaryotic initiation enzyme factor that must be part of RNA polymerase for attachment to promoter sites on DNA. RpoB is beta subunit of RNA polymerase and function in transcription and nonspecific DNA binding, sigma binding.

Sigma factors Functions

DNA^{replication} > DNA DNA^{transciption} > RNA -----> Protein RNA^{Reverse} DNA

- Sigma is a specificity factor.
- It directs RNA polymerase to the promoter and ensures that transcription is initiated only where it is supposed to be initiated.
- The sigma subunit does two things:
- 1. It reduces the affinity of the enzyme for non-specific DNA.
- 2. It greatly increases the affinity of the enzyme for promoters.

Transcription and gene expression Transcription in bacteria

CS 6463: An overview of Molecular Biology

rpoS **gene RpoS The starvation/stationary phase sigma factor**

- Bacterial adaptation to changing conditions and to the host environment requires coordinated changes in gene expression that permit more efficient use of metabolites and increased survival.
- An important form of gene control is through the use of alternative sigma factors that direct RNA polymerase to recognize a distinct group of genes.
- One such sigma factor is RpoS, which is widely present in many Gram-negative bacteria.
- RpoS is important for adaptation under nutrientlimited conditions. e.g. iron limit(siderophore).

rpoS gene Function

- The *rpoS* gene is essential for the:
- 1. Expression of a variety of stationary-phaseinduced genes, as well as for the
- Expression of stationary-phase-specific stress resistance phenotypes, such as increased resistance to high temperature, high concentrations of H₂O₂, and high osmotic challenge.

rpoS gene Function and similarity with *ropD*

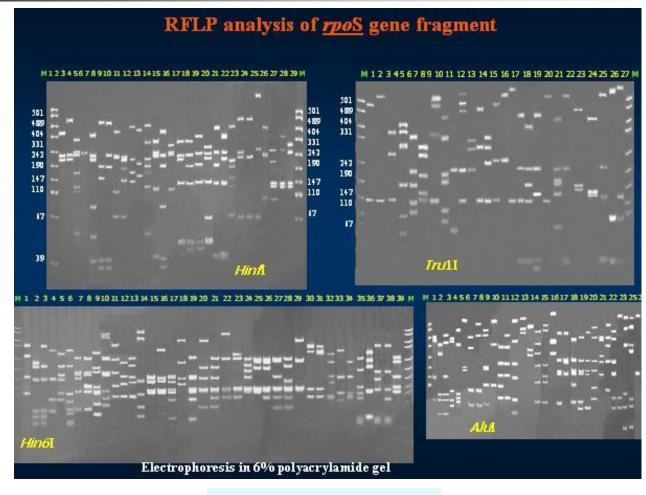
- The *rpoS* has been known as *nur, katF, appR, csi-2*, and *abrD*, a result of independent studies of different phenotypes.
- This gene encodes the sigma factor σ^s.
- σ^s is a protein of 41.5 kDa that controls a regulon of at least 30 genes which are expressed during starvation and at the transition into stationary phase.
- The *rpoS* sequence exhibits extensive homology to *rpoD*, which encodes σ⁷⁰, the sigma subunit of RNA polymerase in *E. coli*.

The design of primers for the *rpo*S gene

The sequence of *Erwinia carotovora rpo*S gene was described

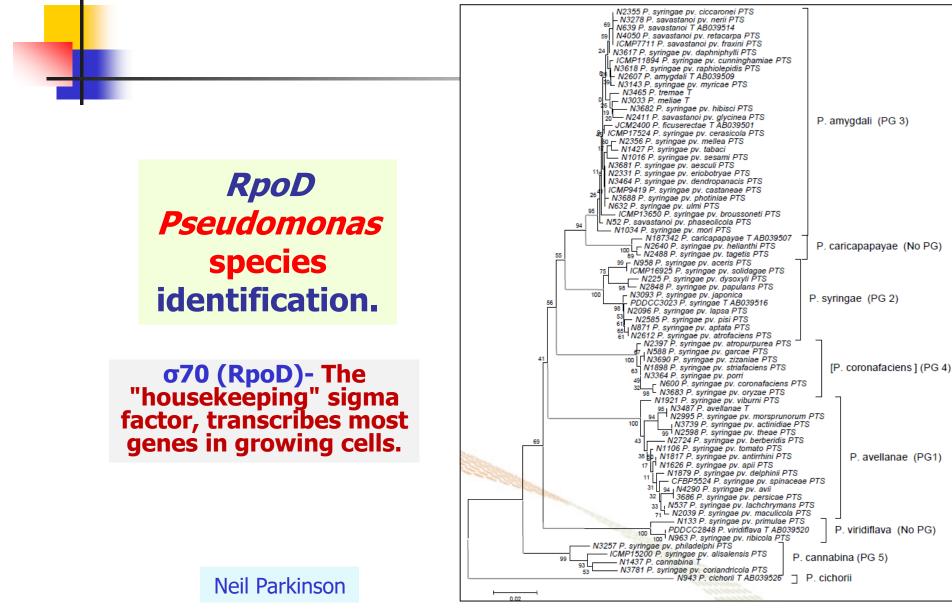
The sequence of designed primers (*Waleron et al.*, in press):

- rpoS1 5'- ATGAGCCAAAGTACGCTGAA -3'
- rpoS2 5'- ACCTGAATCTGACGAACACG -3'

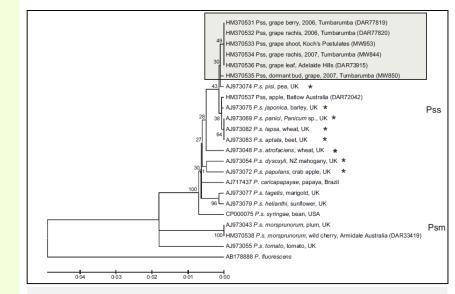

was checked in the complete GeneBank and EMBL databases using the BLAST-n program

Restriction Fragment Length Analysis of *rpoS* gene fragment

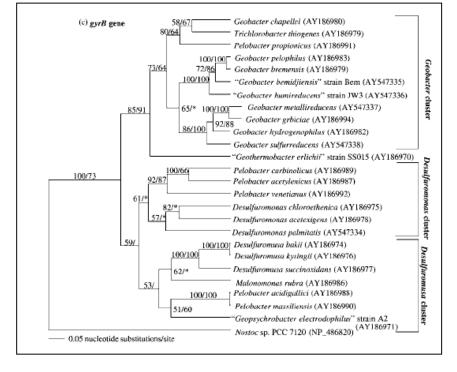
4 restriction endonucleases:

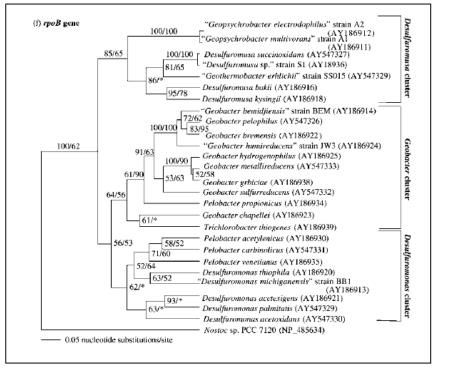

- AluI
- HinfI
- Hinf6I
- Tru1I

were chosen on the basis of the sequence of the recA gene of Erwinia carotovora using Vector NTI software.


Number of profiles described for the different species from the genus *Erwinia based on* RFLP analysis of *rpoS* gene fragment

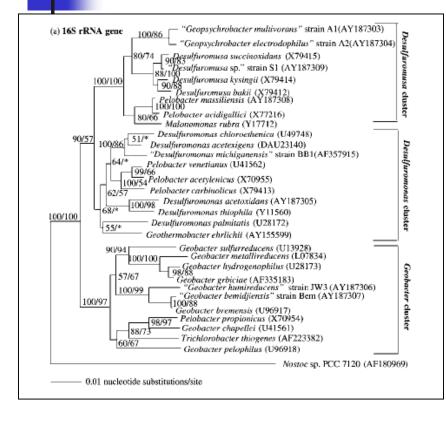
Species	Number of strains	Amount of profile	Numbers of profils	
Eca	24	3	21-23	
Ecc	69	20	29-48	
Edd	12	1	24	
Eco	12	2	25-26	
Ecw	5	1	27	
E. amylovora	39	1	1	
E. ananas	5	2	15, 16, 17	
E. cacticida	10	2	6, 28	
E. camegiena	1	1	6	
E. chrysanthemi	23	15	49-63	
E. cypripedi	5	1	9	
E. herbicola	6	2	18, 19	
E. mallotivora	1	1	5	
E. milletiae	1	1	18	
E. nigrifluens	3	1	13	
E. persicinum	3	2	7,8	
E. psidii	1	1	4	
E. pyrifoliae	6	2	2, 3	
E. quercina	1	1	14	
E. rhapontici	6	1	10	
E. rubifaciens	3	1	12	
E. salicis	2	1	11	
E. stewartii	2	1	20	
E teochoinbilo	1		e	

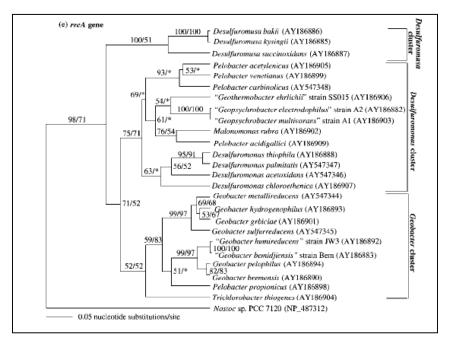

PCR detection of *Pss* Amplification of both genes of *16S rRNA* and *rpoB* (β-subunit of RNA polymerase)


- UPGMA tree derived from *rpoB* gene sequences from representative collected Australian grape strains (boxed); Australian apple and Prunus strains; and published sequences from GenBank.
- Pseudomonas syringae pv. syringae (Pss) and P.s. pv. morsprunorum (Psm) groups are clearly separated.
- Sequence for *Pseudomonas fluorescens* (AB178888) was included as an outgroup.

rpoB gene, a reliable biomarker to distinguish some of *P. syringae* pathovars.

Phylogenetic analysis of sequences Comparison of gyrB and rpoB genes


Holmes et al.,2004


Polyphasic approach 2. Based on *recA* gene Recombination protein

- RecA is a ubiquitous protein, present in nearly all bacteria.
- RecA in *E. coli* is a 38 KDa protein.
- RecA has a structural and functional homolog in every species.
- RecA has multiple activities, all related to DNA repair.
- The bacterial RecA protein is a recombinase, functioning in recombinational DNA repair in bacteria.
- During DNA pairing and strand exchange in genetic recombination RecA protein binds strongly to ssDNA to form a nucleoprotein filament.

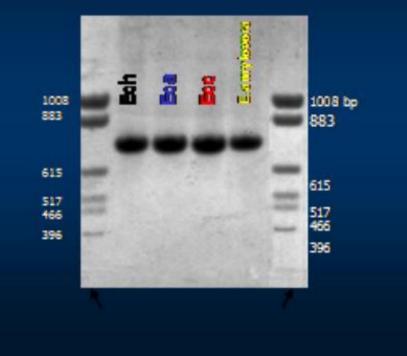
- This reaction initiates the exchange of strands between two recombining DNA double helices and promotes recombinational DNA repair and maintenance.
- RecA is also regulated by the action of other proteins such as RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins.
- All of these proteins function in a network that determines where and how RecA functions.

Phylogenetic analysis of sequences Comparison of 16S rRNA and *recA* **genes**

Holmes et al.,2004

The design of primers for the <u>recA</u> gene

The sequence of *Erwinia carotovora rec*A gene was described by Zhao & McEntee (1990)

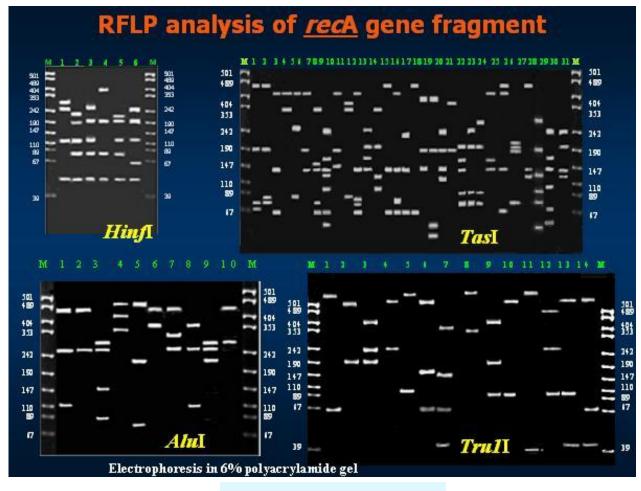

The sequence of designed primers (Waleron *et al.*, 2002):

5'-GGTAAAGGGTCTATCATGCG-3' 5'-CCTTCACCATACATAATTTGGA-3'

was checked in the complete GeneBank and EMBL databases using the BLAST-n program

Lojkowska *et al.*,2004. in EPPO Conference on Quality of Diagnosis and New Diagnostic Methods for Plant Pests.

PCR products amplified by primers for the <u>recA</u> gene



Restriction Fragment Length Analysis of <u>recA</u> gene fragment

4 restriction endonucleases:

- AluI
- HinfI
- TasI
- TruI

were chosen on the basis of the sequence of the recA gene of *Erwinia carotovora* using Vector NTI software.

Number of profiles described for the species from the genus *Erwinia based on* RFLP analysis of <u>rec4</u> gene fragment

Species	Number of strains	Amount of profils	Number of profis
Eca	106	2	1, 2
Ecc	158	18	3-20
Ecb	12	1	21
Eco	12	1	22
Ecw	5	1	23
E. amylovora	39	1	32
E. ananas	5	2	25, 26
E. cacticida	16	3	29, 30, 31
E, carnegiena	1	1	31
E. chrysanthemi	93	15	33-46
E. cypriped	5	1	24
E. herbicola	6	2	27,28
E. mallotivora	1	1	55
E. milletiae	1	1	28
E. nigrifluens	3	1	51
E. persicinum	3	1	49
E. psidii	1	1	54
E. pyrifoliae	6	1	58
E. guercina	1	1	56
		1	
E. rhapontici	6	1	53
E. rubifaciens	3	1	50
E. salicis	2	1	52
E. stewartii	2		48
E. tracheiphila	1	1	57

Polyphasic approach 3. Based on DNA gyrase Unwinds the coiled DNA to relieve tension

- DNA topoisomerase converts supercoiled DNA to a relaxed form.
- DNA topoisomerases are divided into two classes:
- 1. Type I enzymes (topoisomerases I, III and V) break single-strand DNA.
- 2. Type II enzymes (topoisomerases II, IV and VI) break double-strand DNA.
- DNA gyrase, a type II bacterial topoisomerase composed of:
- 1. Two A subunits (GyrA)encoded by the gyrA, and
- 2. Two B subunits (GyrB), encoded by the *gyrB* genes.

Polyphasic approach Species discrimination using *gyrB gyrB* an essential role in DNA replication

- Most species were clearly resolved.
- Multiple strains clustered within the species grouping.
- Only *X. albilineans* has not amplified -yet
- Some new species were not resolved. These probably represent misclassifications.

Negatively supercoils closed circular double-stranded DNA

- Thus, gyrA gene codes for two of the four subunits of the bacterial DNA gyrase enzyme i.e. GyrA.
- The gyrase enzyme introduces negative supercoils into DNA in an ATP-dependent reaction.
- gyrA is characterized by areas of high conservation and areas of variability, making it suitable for bacterial identification.
- The gyrA gene is used as a specific chromosomal marker in identification of many bacteria.

The design of primers for the <u>gyrA</u> gene

The sequence of *Erwinia carotovora gyr*A gene was described by Rosanas *et al.* (1995)

The sequence of primers designed (Waleron *et al.*, in press):

5'-TGGTGACGCGTCGTACCATT-3' 5'-ATACCCACAGCATGACCGCC-3'

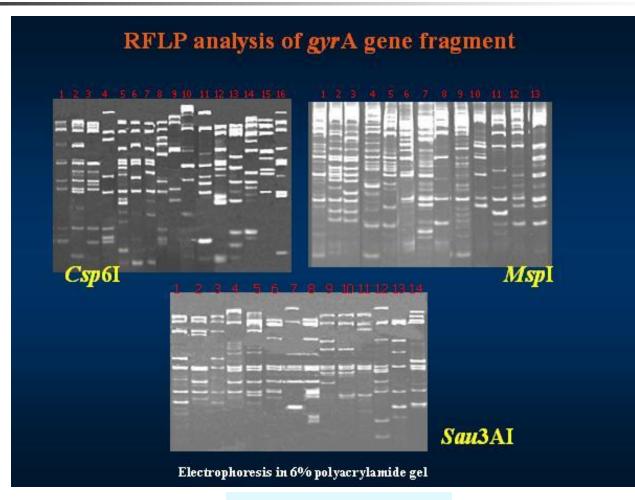
was checked in the complete GeneBank and EMBL databases using the BLAST-n program

The design of primers for the <u>gyrA</u> gene

The sequence of *Erwinia carotovora gyr*A gene was described by Rosanas *et al.* (1995)

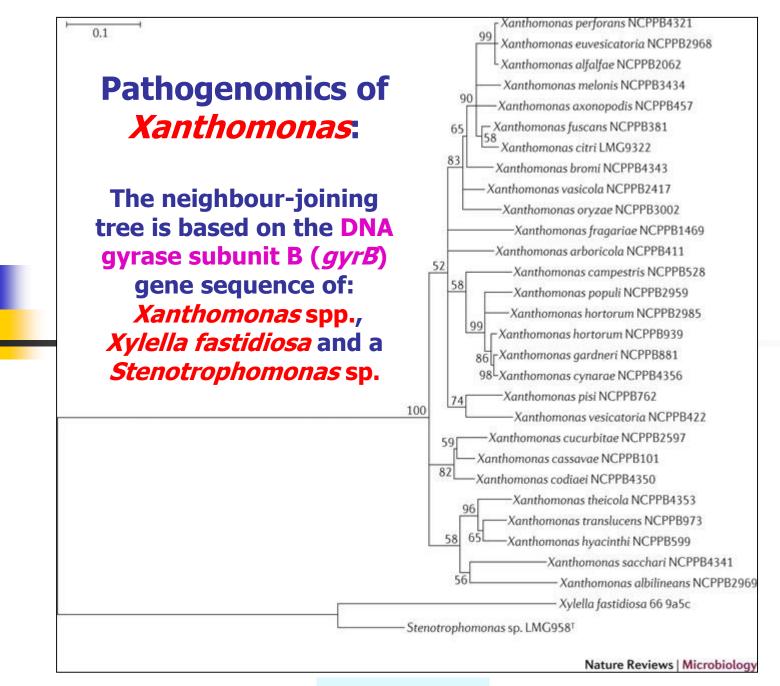
The sequence of primers designed (Waleron *et al.*, in press):

5'-TGGTGACGCGTCGTACCATT-3' 5'-ATACCCACAGCATGACCGCC-3'


was checked in the complete GeneBank and EMBL databases using the BLAST-n program

Restriction Fragment Length Analysis

3 restriction endonucleases:


- Csp61
- MspI
- *Taq*I

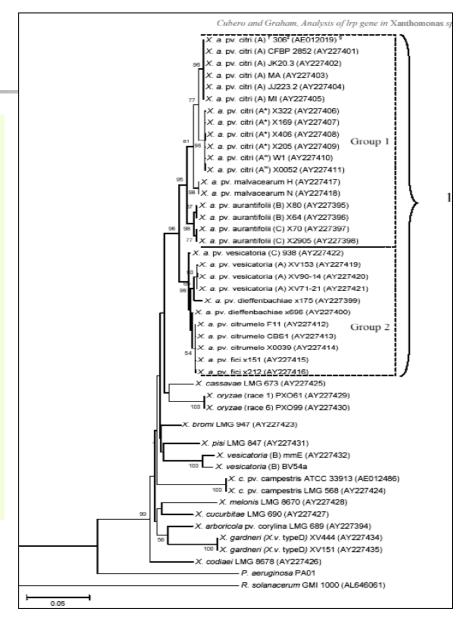
were chosen on the basis of the sequence of the recA gene of *Erwinia carotovora* using Vector NTI software.

Number of profiles described for the different species from the genus *Erwinia* based on RFLP analysis of *gyrA* gene fragment

Subspecies	Number	Amount	Number
	strains	profils	profils
E, carotovora subsp. atroseptica	43	7	1-7
E, carotovora subsp. carotovora	94	24	8-31
E, carotovora subsp. batavasculorum	12	1	33
E, carotovora subsp. odorifera	12		31
E, carotovora subsp, wasabiae	8	1	32
E, rhapontici	3	1	34
E, cacticida	12	3	35-37

Ryan *et al.*,2011

Polyphasic approach 4. Based on *Irp* gene Leucine-responsive regulatory protein (*Irp*) gene


- Because of universal presence of *lrp* gene in genus *Xanthomonas*, as well as in other Gram-negative bacteria, and the fact that horizontal transmission is improbable, analysis of the *lrp* gene may be a widely adaptable tool for polyphasic taxonomic studies of bacteria.
- This method should be particularly valuable as a complement to current rDNA- and rep-PCR-based approaches, due to its capability for high resolution at the specific and infraspecific levels.

A new tool for polyphasic analysis of the genus Xanthomonas

- Sequence analysis of the leucine-responsive regulatory protein (*Irp*) gene (A transcriptional regulator) revealed a high level of similarity within the genus *Xanthomonas*.
- Higher variability was observed at the nucleotide level than at the amino acid level among the different species and pathovars.
- Variability in the *lrp* gene was higher than that in 16S rDNA alone or 16S rDNA combined with the rDNA ITS region and slightly lower than that in the ITS region alone.
- Thus, the moderate variability in the *lrp* gene sequence may be used to investigate phylogenetic relationships and to clarify the classification of xanthomonads.

Phylogeny based on Leucine responsive regulatory protein (*LRP*) analysis

- A dendrogram based on pairwise comparison of all *Irp* sequences showed that *Xanthomonas* species grouped together, with *P. aeruginosa* and *R. solanacearum* as outgroups.
- The largest cluster within Xanthomonas was cluster
 1 which encompassed all strains that are presently proposed as pathovars of X. axonopodis (Vauterin et al.,2000).

Cubero & Graham, 2003

New methods for description and classification of bacterial species Mulitlocus enzyme electrophoresis (MLEE)

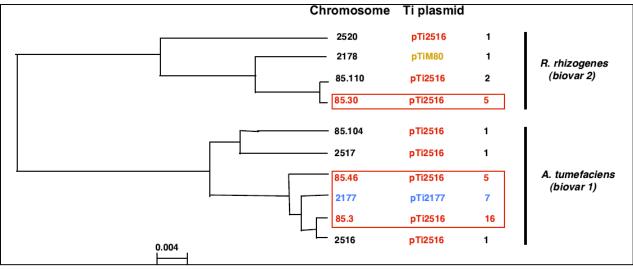
- Mulitlocus enzyme electrophoresis (MLEE):
- MLST is different from MLEE in assignation of alleles(one of a pair of genes at a single locus) by nucleotide sequencing rather than the electrophoretic mobility of their gene products.
- Classifies bacteria on the basis of the isoforms of a combination of approx. 15 metabolic enzymes.
- Drawback:
- 1. Determines phenotypes and not genotypes.
- 2. Phenotype of the enzyme can easily be altered in response to environmental conditions and badly affect the reproducibility of MLEE results.
- 3. low throughput (intensive laboratory work);
- 4. not widely used.

Medini et al.,2008

Polyphasic approach Multiplex PCR (mPCR)

- A multiplex PCR is a phylogentic method has been designed to aid in identification and differentiation of the bacteria like *Agrobacterium*, *Erwinia*, *R.solanacearum*, etc.
- e.g. One-step multiplex PCR is used for simultaneously identification of the both *ams*-genes and pEA29 of *E. amylovora*.

Multiplex PCR: a novel method of simultaneous amplification of multiple DNA fragments (usually all target genes). The multiplex PCR assay is useful for low-cost screening of large numbers of isolates with rapid analytical capacity and could be utilized in most laboratories. Multilocus sequence typing (MLST): a reliable method for simultaneous amplification of multiple DNA fragments (usually housekeeping genes). However, the method is costly, time-consuming and difficult to use for screening large numbers of isolates.

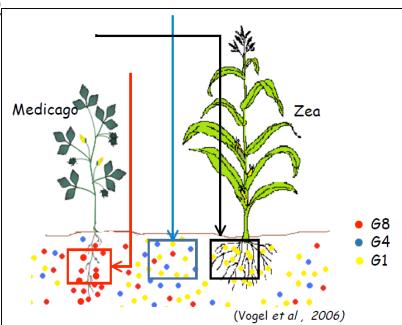

The species complex Diversity of tumorigenic agrobacteria isolated from poplar crown galls from Orléans

- At present, tumorigenic bacteria belong to the:
- Species complex *A. tumefaciens* (= *A. radiobacter* = biovar 1) which consist of 10 genomovars (G1 to G7, G9, G13 and G14), and
- 2. The six species *A. vitis* (= biovar 3), *A. rubi*, *A. larrymoorei*, *A. rhizogenes* (= biovar 2), the recently described *A. fabrum (Lassalle et al.*,2011) likely involved in plant-bacteria commensal interaction and *Rhizobium skierniewicense* (Pulawska *et al.*,2012).

The species complex

Diversity of tumorigenic agrobacteria isolated from poplar crown galls from Orléans

- There is generally more than a single strain involved in crown gall outbreaks at both:
- 1. Chromosome, and
- 2. Ti plasmid levels.

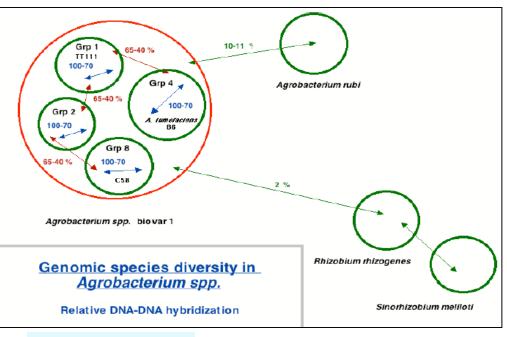


The species complex Genomic species diversity in *Agrobacterium* spp. *A. tumefaciens* (=*A. radiobacter* =biovar 1) consist of 10 genomovars

- The species complex A. tumefaciens (=A. radiobacter =bv.1) consist of 10 genomovars (G1 to G7, G9, G13 and G14).
- Agrobacterium genomovars are differentially selected by plants.
- 1. G1, G8 et G4 in the same soil;
- 2. G1 in maize rhizospheres;
- 3. G8 in medic rhizospheres.

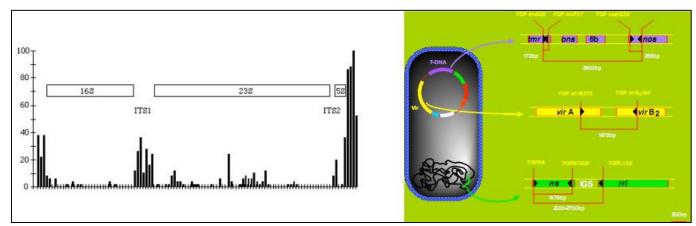
The question is are genomovars ecovars ?

Genomovars are phenotypically similar, genotypically distinct groups of strains.


COST 873,2011

The species complex

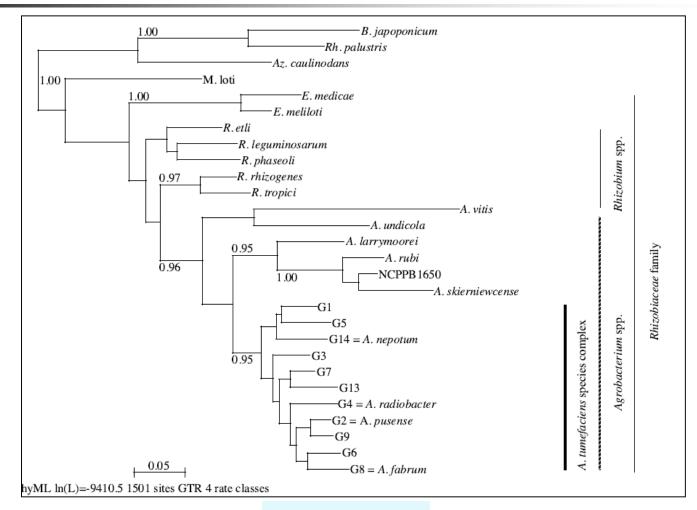
RBS(ribosome-binding site) reveals several genomovars in the biovar 1/*A. tumefaciens* complex


How to rapidly identify Agrobacterium species in the outside environment to study their ecological specificity without performing tedious RBS studies?

A ribosomal binding site (RBS) is a sequence on mRNA that is bound by the ribosome when initiating protein translation.

PCR detection and identification of tumorigenic agrobacteria PCR primers designed based on chromosome (16S+ITS), or Ti plasmids

- 16S+16S-23S-ITS regions useful at the infraspecific level.
- PCR primers designed to type:
- 1. Chromosome (16S+ITS), or
- 2. Ti plasmids (vir or T-DNA conserved regions).


COST 873,2011

PCR detection and identification of tumorigenic agrobacteria A multiplex PCR

- The genetic diversity was evaluated for these isolates by comparing DNA samples using multiplex PCR with three specific primer pairs.
- The isolates were segregated into three main groups:
- 1. The first group that is isolated carry octopine type Ti plasmids;
- 2. The second group that is isolated carry vitopine Ti plasmids and,
- 3. The third group that is isolated carry both octopine and vitopine type Ti plasmids.

Revised nomenclature of *Agrobacterium* spp.

Last version obtained in the present 2011 COST meeting

COST 873,2011

Agrobacterscope Project Information 16 new *A. tumefaciens* genomes sequenced: at least one per genomovar

About MicroScope Projects	- Micr	F J						1	
Welcome guest (Lost password?)	ername •••	LOGIN)						
Welcome guest (Lost password?) US MaGe	Genomic Tools	Comparative Genomics	Metabolism	Searches	Export	Experimental Data	User Panel	Át	
About * MicroScope Project	•						Text Format	Help	
Get general information abo MicroScope ongoing project such as project leader publications, related sequence etc. These projects are set up the context of our UMR resear projects, in the context of IB/S	is, s, is, in ch	AgrobacterScope Project Information							
sequencing calls and in the context of other requests. Check out our «Service Offer» f further information.	or Ci	enomes: Agrot reation Date: 2	008-02-26	cies					
Available Projects AGI5Scope AcidothermuScope AcinetoScope ActivatedSludgeScope AdelgidScope	P		ESME Microbienne	vembre 1918 V	illeurbanne Fra	ance			

New methods for description and classification of bacterial species Multilocus sequence typing (MLST)

- Multilocus sequence typing (MLST):
- Based on the partial sequences of 7 housekeeping genes of approx. 450 bp each.
- high throughput (output);
- 2. allows direct comparison between different laboratories;
- 3. > Database (MLST Public Repository).
- Drawback:
- 1. For some species there is too little sequence variation in the housekeeping genes for a sufficient discrimination.
- Drawback for 16S rRNA and MLST:
- 1. Only limited genome coverage.

New methods for description and classification of bacterial species Multilocus sequence typing (MLST) MLST Public Repository

- MLST is based on the analysis of allelic profiles generated by comparing sequences to an online repository(store).
- PulseNet vs. MLST websites:
- PulseNet (the molecular subtyping network for foodborne bacterial disease) is only accessible by their member laboratories due to privacy and confidentiality issues. Whereas
- MLST websites host publicly accessible databases where any laboratory can submit data.

	typing databases			
Method	Database	URL		
	MLST.net	http://www.mlst.net		
	Pubmlst.org	http://www.pubmlst.org		
MLST	Institut Pasteur MLST	http://www.pasteur.fr/mlst/		
	European Working Group for Legionella Infections Sequence-based typing database	http://www.hpa-bioinformatics.org.uk/legionella legionella_sbt/php/sbt_homepage.php		
	Environmental Research Institute, University College Cork	http://mlst.ucc.ie/		
	MLVAbank	http://minisatellites.u-psud.fr/MLVAnet/		
	Groupe d'Etudes en Biologie Prospective	http://www.mlva.eu		
MLVA	MLVAplus	http://www.mlvaplus.net/		
	Institute Pasteur MLVA: MLVA-NET	http://www.pasteur.fr/mlva		
	MLVA.net	http://www.mlva.net		
ccrB typing	Staphylococci ccrB sequence typing	http://www.ccrbtyping.net/		
dru typing	dru typing database	http://www.dru-typing.org		
spa typing	Ridom Spa Server	http://spaserver.ridom.de/		
CRISPR typing	CRISPRdb	http://crispr.u-psud.fr/crispr/		

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeat; MLST: multilocus sequence typing; MLVA: multilocus variable-number tandem repeat analysis.

Polyphasic approach Based on multilocus sequence typing (MLST) analysis

- Multilocus sequence typing (MLST) is another phylogentic method in molecular biology for the typing of multiple loci.
- The procedure characterizes isolates of bacterial species using the DNA sequences of internal fragments of multiple (usually seven) housekeeping genes.
- Approximately 450-500 bp internal fragments of each gene are used, as these can be accurately sequenced on both strands using an automated DNA sequencer.
- For each housekeeping gene, the different sequences present within a bacterial species are assigned as distinct alleles and, for each isolate, the alleles at each of the loci define the allelic profile or sequence type (ST).

Principle of MLST Multilocus sequence typing (MLST) analysis

- Molecular phylogeny deduced from a single locus may be unreliable due to the stochastic nature of base substitutions or to rare horizontal gene transfer events (Yamarnoto *et al.*,2000).
- MLST directly measures the DNA sequence variations in a set of housekeeping genes and characterizes strains by their unique allelic profiles.
- The principle of MLST is simple:
- The technique involves PCR amplification followed by DNA sequencing.
- Nucleotide differences between strains can be checked at a variable number of genes (generally seven) depending on the degree of discrimination desired.

Principle of MLST Multilocus sequence typing (MLST) analysis

- The workflow of MLST involves:
- 1. Data collection,
- 2. Data analysis, and
- 3. Multilocus sequence analysis.
- In data collection, definitive identification of variation is obtained by nucleotide sequence determination of gene fragments.
- In data analysis:
- All unique sequences are assigned allele numbers, and
- Combined into an allelic profile, and
- Assigned a sequence type (ST).
- In the final section of MLST the relatedness of isolates are made by comparing allelic profiles.

Polyphasic approach Genomic approaches to estimate diversity Based on multilocus sequence typing (MLST) analysis

- Sequence 400-600bp of at least 6 housekeeping genes.
- Identical alleles given same profile designation ("Sequence Type").
- Advantages:
- Higher variability in housekeeping genes compared to 16S rDNA. Increased length sequence analyzed (differentiation below sp. level)
- II. Sequencing at least 6 genes reduces risk of interference from horizontal gene transfer.

MLST: www.mlst.net

Multi Locus Sequence Typin	9 Policy Document	t Sunday 7th June
DATA ANALYSIS		
DATABASES	Welcome to the M	ulti Locus Sequence Typing home page
SUBMISSIONS	MLST is a nucleotide sequence isolates of bacteria and other orga	based approach for the unambiguous characterisation misms via the internet.
NEWS		ortable, accurate, and highly discriminating typing system the I some other organisms. It is envisaged that this approach ping of bacterial pathogens.
NEW MLST SCHEMES	(MLEE) and have adapted them so	the proven concepts of multilocus enzyme electrophoresis o that alleles at each locus are defined directly, by nucleotide from the electrophoretic moblity of their gene products.
IN DEVELOPMENT Site requirements	MLST was developed in the labora Mark Achtman and Brian Spratt.	atories of Martin Maiden, Dominique Caugant, Ian Feavers,
She requirements		ollege with funding from the Wellcome Trust. a individual species are shown on their respective front page
	For general information please Cli	ick here or to register feedback or interest Click here
	News	more new
	18 Aug 2008	<i>Leptospira spp</i> MLST scheme launch Click here to visit the si
	24 Jun 2008	<i>Borrelia burgdorferi</i> MLST scheme launch Click here to visit the si
	Types. The	s : a facility for mapping the global distribution of Sequen MLST databases have been made available to view usi gle Maps or Google Earth. Click here to visit the site
	For commonte quorios hu	igs or suggestions please contact David Aanensen

MLST O		MMMM	3.
Mara Locas ocquerice Typing		Policy Document	Sund
DATA ANALYSIS	DATABASE	s	

DATABASES

- B.burgdorferi
- B.cereus
- B.pseudomallei
- C.albicans
- C.glabrata C.krusei
- C.tropicalis
- C.jejuni
- C.neoformans var grubii

PubMLST MLST Home

Software

Bio-Linux

Web tools

Software

Bacteria

Arcobacter

B. cereus

Bordetella

Brachyspira

C. helveticus

C. upsaliensis

Chlamydiales

M. haemolytica

P. aeruginosa P. gingivalis S. agalactiae S. maltophilia S. oralis S. uberis S. zooepidemicus Streptomyces

C. insulaenigrae C. ieiuni & C. coli

B. cepacia

C. fetus

C. lari

H. pylori

Neisseria

A. baumannii

B. hyodysenteriae

Search / site map

- E.coli
- E.faecalis
- E.faecium
- H.influenzae
- H.pylori
- Leptospira spp.
- M.catarrhalis
- N.meningitidis
- S.agalactiae
- S.aureus
- S.enterica
- S.epidermidis
- S.pneumoniae
- S.pyogenes
- S.suis
- V.vulnificus

Navigation **MLST of Burkholderia cepacia complex**

Genes

The Burkholderia cepacia complex MLST scheme uses fragments of the following seven house-keeping genes:

Please select the database you would like to access / guery from the left hand menu

ATP synthase beta chain (atpD) Glutamate synthase large subunit (gltB) DNA Gyrase subunit B (gyrB) Recombinase A (recA) GTP binding protein (lepA) Acetoacetyl-CoA reductase (phaC) Tryptophan synthase subunit B (trpB)

PCR amplification

Reaction conditions for all the primers were as follows: initial denaturation at 96°C for 1 min; 30 cycles of denaturation at 96°C for 1 min, primer annealing at 58°C for 1 min, extension at 72°C for 2 min; followed by a final extension step of 72°C for 5 min. Each 50 µl amplification reaction mixture comprised: 10 µl Q solution (Qiagen), 4.0 µl chromosomal DNA (5-20 ng/µl), 2.0 µl forward primer (10 pmol/µl), 2.0 µl reverse primer (10 pmol/µl), 5.0 µl 10x PCR buffer (Qiagen, contains 15 mM MgCl2), 1.0 ?l dNTP solution (Qiagen, 10 mM each dNTP), 0.25 µl Tag polymerase (Qiagen, Sunits/µl) and 25.75 µl PCR-grade water. All Qiagen solutions from PCR CORE Kit (Cat No. 201225).

iday 7th

The amplification product was then purified using MinElute UF plates (Qiagen) following the manufacturers protocol before being used in a sequencing reaction. Sequencing was carried out on each DNA strand with BigDye Terminator Ready Reaction Mix v3.1 (PE Biosystems, Foster City, US) under standard sequencing conditions according to the manufacturer's protocol. Unincorporated dye terminators were removed by precipitation with 95% alcohol. The reaction products were separated and detected on a ABI PRISM genetic analyser 3100 (PE Biosystems) using a standard seguencing module with a Performance Optimised Polymer and 5 cm array.

The primers used in MLST analysis of B. cepacia complex are listed below.

P. gingivalis S. agalactiae	Gene	Direction	Primer Sequence				
S. maltophilia S. oralis	atpD	F	GATCGTACAGTGCATCGG				
S. uberis		R	ATCGTGCCGACCATGTAG				
S. zooepidemicus	gltB	F	CGCTCGAAGATCAAGCAG				
Streptomyces V. parahaemolyticus		R	GGGAACACCTTCACGAAC				
V. vulnificus	gyrB	F	CGACAACTCGATCGACGA				
Wolbachia		R	GACAGCAGCTTGTCGTAG				
+ Eukaryotes	recA	F	GATAGCAAGAAGGGCTCC				
+ Other dbases		R	CTCTTCTTCGTCCATCGCCTC				
+ Mirrors	lepA	F	CGACGGCAAGGTCTACAA				
+ Developers		R	AGCATGTCGACCTTCACG				
	phaC	F	CTCAGCGAATTGCGTACG				
		R	CCGTTCAGCGAGAAGTCG				
	trpB	F	GATCTACCTGAAGCGCGA				
		R	GTGTGCATGTCCTTGTCG				

Citing the database

The preferred format for citing this website in publications is:

This publication made use of the Burkholderia cepacia complex Multi Locus Sequence Typing website (http://pubmlst.org/bcc/) developed by Keith Jolley and sited at the University of Oxford (Jolley et al. 2004) BMC Bioinformatics, 5:86). The development of this site has been funded by the Wellcome Trust.

Status

Profile database Profiles: 563 Last updated: 2009-05-28

> Isolate database Isolates: 923 Last updated: 2009-05-28

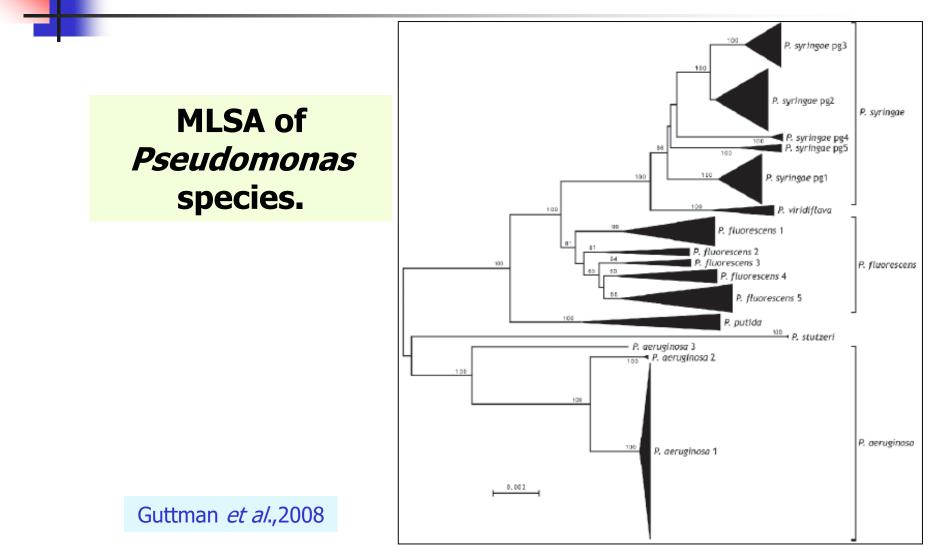
MLST: www.mlst.net *Burkholderia* spp.

- Please paste your sequences as one continuous string (no spaces) in the following boxes and click submit.
- The boxes contain sequences which can be used to demonstrate the features of eMLSA.net.
- Click 'Reset' to enter your own gene sequences.

MLST: www.mlst.net *Burkholderia* spp.

Databases	ace.	gitB:
<u>Viridans group streptococci</u> <u>Burkholderia spp.</u>	CGAATTGCTTACGTAACGGGCGGCATGGGCGGCATCGGG	CGCAACGAGCTGCGCGGCATTCCGATCAAGGTCGGCGAG
	<	
	gmhD:	lepA:
	GCGCCGCTCAATGTGTACGGCTATTCGAAGTTCCTGTT(CACATCGACCACGGCAAGTCGACGCTCGCGGATCGCAT(
	lipA:	narK:
	AAGTGCACGCGCCGCTGCCCGTTCTGCGACGTCGGCCA	CCCGAAAACCCGGCCTTCTGGCAAGCCAAGGGGGCGCCCC
		<
	ndh:	
	ATGTACGAGCTCGCGCCCGTCGGCAAGCACAAGATCAC(
	submit Reset	

Classification of pseudomonads Based on multilocus sequence typing (MLST) analysis


- MLST is a highly discriminating, rapid, and portable DNA-based strain typing method in which regions from several housekeeping loci are sequenced from each strain.
- A preliminary multilocus sequence typing (MLST) analysis of 367 strains within the genus *Pseudomonas* identified major clades corresponding to *P. syringae*, *P. viridiflava*, *P. fluorescens*, *P. putida*, *P. aeruginosa*, and *P. stutzeri*.

Species Pathovars Genomospecies and species MLST clades/Phylotypes

Classification of pseudomonads Based on multilocus sequence typing (MLST) analysis

- We report here on the multilocus sequence typing (MLST/MLSA) of the genus *Pseudomonas*.
- Four loci totaling 2046 bp of sequence were obtained from 367 Pseudomonads.
- The four housekeeping genes sequenced were:
- *1. rpoD*, encoding sigma factor 70,
- 2. gyrB, encoding DNA gyrase B,
- *3. gltA* (also known as *cts*), encoding citrate synthase, and
- *gapA*, encoding glyceraldehyde-3-phosphate dehydrogenase.

Polyphasic approach *Pseudomonas* Based on Multilocus sequence typing (MLST) analysis

Classification of pseudomonads Based on multilocus sequence typing (MLST) analysis *P. syringae*

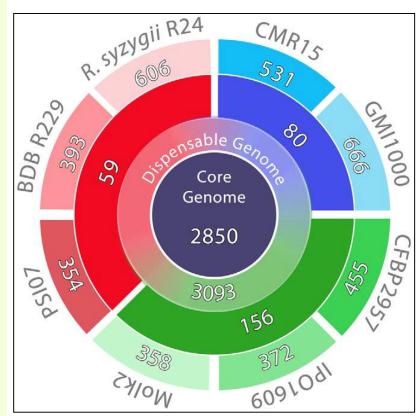
- Applying MLST technique on sequencing 6-8 selected housekeeping genes and identification of polymorphic nucleotide sites has been introduced for the characterization of *P. syringae* isolates.
- Combination of the alleles at the different loci results in unique diploid sequence types that can be used to discriminate strains.

Polyphasic approach New taxonomy of the *R. solanacearum* species Based on three genes including *egl* (endoglucanase gene sequence), a new marker used for *R. solanacearum* diversity

- The most recent study compared the:
- 1. 16S rDNA sequences,
- 2. egl (endoglucanase sequences), and
- 3. *hrpB* sequences from the most representative set of strains studied to date and consistently found four major divisions (phylotypes) that correlated with geographic origin.

Phylotypes: A group that is part of the same phylogenetic cluster based on the analysis of three loci.

Denny,2006


Polyphasic approach New taxonomy of the *R. solanacearum* species Based on pan-genome and comparative genomic analysis approach

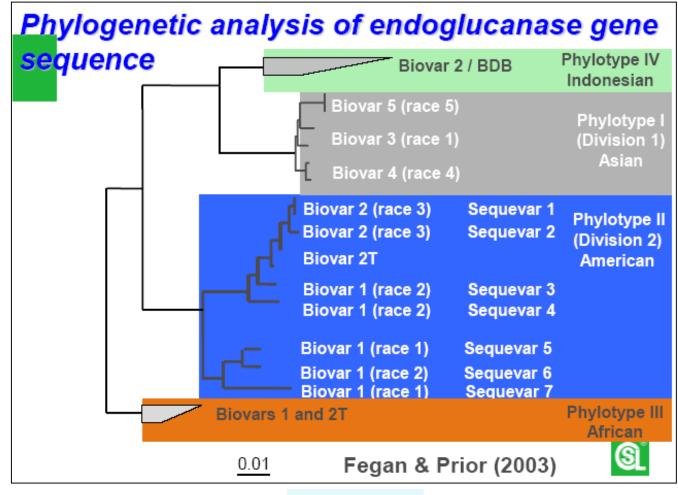
drawing on previously published *R. solanacearum* genome sequences

- Based on the pan-genome (the set of genes present in the collective genomes of the *R. solanacearum* species complex) and computation of genomic distances between sequenced *R. solanacearum* strains, we again suggested that the *R. solanacearum* species complex should be restructured into three different species:
- 1. One containing phylotypes I and III,
- 2. A second containing phylotype II, and
- 3. A third containing *R. solanacearum* strains from phylotype IV.

Polyphasic approach New taxonomy of the *R. solanacearum* species Based on pan-genome and comparative genomic analysis approach drawing on previously published *R. solanacearum* genome sequences

- Number of genes in the species complex pan genome.
- From inside to outside:
- 1, Core Genome,
- 2, Dispensable Genome,
- 3, Specific Genome at the phylotype level.
- Blue: phylotype I and III;
- Green: phylotype II;
- Red: phylotype IV, and
- 4, Specific Genome at the strain level.

Remenant et al.,2010 and 2011


Polyphasic approach Pathogen diversity

Phylotype and sequevar determination in *R. solanacearum* species complex

- The *Ralstonia solanacearum* species complex consists of four phylogenetically distinct major lineages, named phylotypes.
- Each phylotype contains strains primarily isolated from specific geographic areas:
- 1. Phylotype I strains are from Asia;
- 2. Phylotype II are from the Americas;
- 3. Phylotype III are from Africa; and
- 4. Phylotype IV are from Indonesia, Japan, Australia, and the Philippines.

Pathogen diversity Sequevar determination

Determination uses endoglucanase gene sequence

Polyphasic approach

Based on Multilocus sequence typing (MLST) analysis MLSA of the *R. solanacearum* complex

- 92 *Ralstonia* strains were studied:
- 1. 90 *R. solanacearum* of the 4 phylotypes and various ecotypes;
- 2. Type strains of *R. insidiosa* and *R. pickettii*.
- 8 single-copy and evenly distributed genes:
- Housekeeping, chromosome (*leuS*, *rplB*, *gdhA*, *gyrB*, *adk*, *mutS*); and
- 2. Virulence-related, megaplasmid genes (*Egl, fliC*).
- Note that *fliC* (Flagellin encoded gene), *egl* (encodes endoglucanase) and *hrpB* (*hrpB* encodes an araC (1-B-D-arabinofuranosylcytosine) type ranscriptional regulatory protein) are located on the megaplasmid.

Wicker et al.,2012

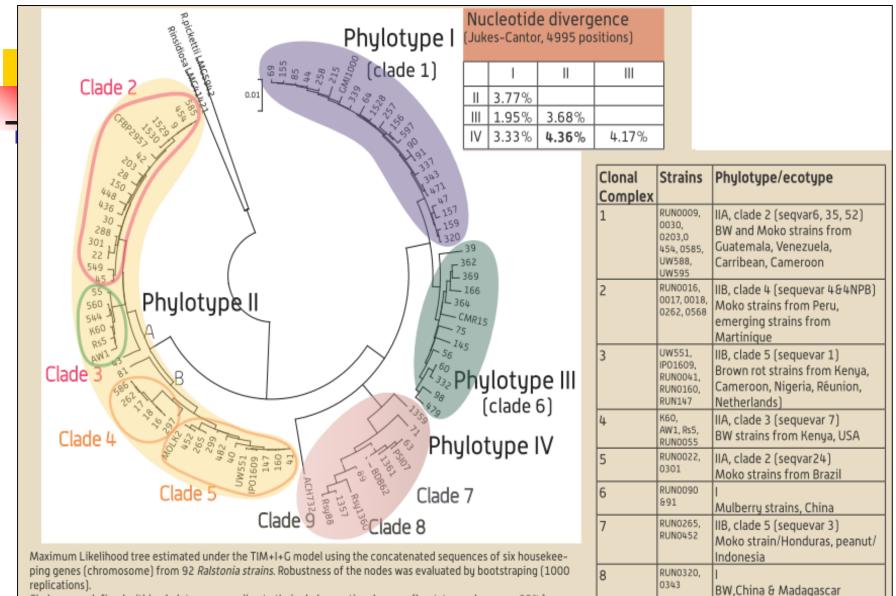
Multilocus sequence typing (MLST) analysis *R. solanacearum*

- Virulence-related genes which are located on the megaplasmid, are implicated directly as (*egl*) or indirectly as (*hrpB* and *fliC*) in disease-causing processes.
- 1. Flagellin- encoded by the *fliC* gene, is the essential subunit of the flagellar filament that is needed for invasive virulence.
- *hrpB* encodes an araC (1-B-D-arabinofuranosylcytosine) type transcriptional regulatory protein that governs multiple virulence pathways.
- 3. *egl* encodes an endoglucanase that likely acts at the front line of host invasion by partially degrading host cell walls.

Multilocus sequence typing (MLST) analysis Phylotype and sequevar determination

Primer sequences used in PCR:

Gene	Primer designation ^a	Primer sequence (5 ' 3')	Annealing temperature	
hrs D	RShrpBF	TGCCATGCTGGGAAACATCT	64	
hrpB	RShrpBR	GGGGGCTTCGTTGAACTGC	64	
a cil	EgIF	AAATCCAGATATCGAATTGCCAA	57	
egl	EgIR	GCGTGCCGTACCAGTTCTG	57	
<i>#</i> :0	Rsol_fliCF	GAACGCCAACGGTGCGAACT	<u></u>	
fliC	Rsol_fliCR	GGCGGCCTTCAGGGAGGTC	63	


- This new classification scheme broadly reflects:
- 1. The ancestral relationships, and
- 2. Geographical origins of the strains.

Pathogen diversity Phylotype and sequevar determination

The three virulence-related genes located on the megaplasmid in virulent and avirulent isolates of *R.* solanacearum.

Gene	Fragment		Virulent isolates					Av	irulent isola	ites
	length (bp)	S1	S2	S3	S4	S5	S6	S7	S8	S9
hrpB	810	+	+	+	+	+	+	+	+	+
egl	686	+	+	+	+	+	+	+	+	+
fliC	318	+	+	+	+	+	+	+	+	+

Multi-Locus Sequence Analysis(MLSA) *R. solanacearum*

Clades were defined within phylotypes according to their phylogenetic relevance (bootstrap values over 80%)

Wicker et al.,2012

Multi-Locus Sequence Analysis MLSA of *R. solanacearum* species

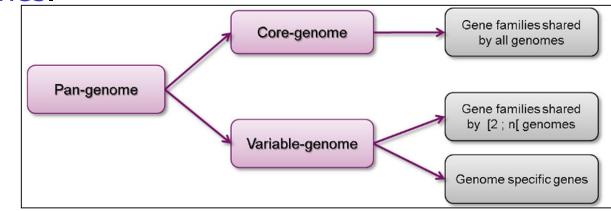
- The 4 phylotypes are subdivided in different clades, but DNA divergences observed between phylotypes are below species delineation values.
- Phylotypes display different population structures:
- 1. Recombining (phylotype I),
- 2. Slightly clonal (phylotype III),
- 3. Highly clonal (phylotype II).

Phylotype	Clade	EGL (Fegan&Prior ,2005, unpublished 2008)	Features		
I (Asian)	1	Sequevars 12-34	bacterial wilt		
ll (American) A	2	Sequevar 7	US biovar 1, bac- terial wilt		
А	3	Sequevars 6, 24, 35,36,39	Moko disease, bacterial wilt		
В	4	Sequevar 4	Moko disease, bacterial wilt (emerging strains)		
В	5	Sequevar 1-2, 3	Brown rot Moko disease		
III (African)	6	Sequevars 19-23,29, 42-44,49	Brown rot and bacterial wilt		
IV	7	Sequevar 9			
		Sequevar 10	BDB & BW		
	9 ?	Sequevar 11	ACH432		

New methods for description and classification of bacterial species The Bacterial Pan-Genome

- There are up to 7,411 complete sequenced bacteria genomes up to date.
- The dramatic increase in genome sequencing during the last years has changed our ideas about bacteria diversity, from single gene to whole community DNA surveys; we have learned that the nature largest gene repository resides in bacteria.
- The largest amount of life's gene functions diversity resides in bacteria.

New methods for description and classification of bacterial species Bacterial pan-genome

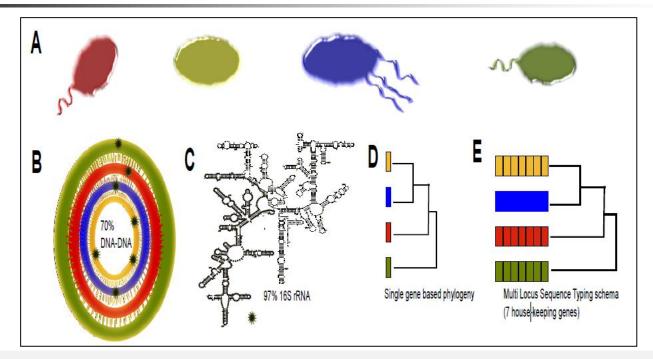

- Pan genome: Can be divided in core genome and accessory genome.
- The total of core genome and accessory genome are known as pan-genome.
- 1. Core genome: genes shared by all strains of the same species.
- 2. Dispensable genome: consisting of partially shared and strain-specific genes, i.e. genes present in some but not all of the same species.

In molecular biology a pan-genome (or supra-genome) describes the full complement of genes in a species.

Campbell and co-workers; Alcaraz, 2014

Bacterial pan-genome It is the union of all the gene families and specific genes of all the strains

- Pan-genome includes:
- The core-genome containing gene families shared by all the organisms (intersection of gene families).
- The variable-genome containing genes families shared by two or more organisms and strain specific genes.



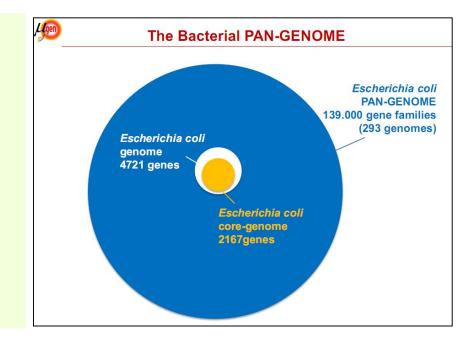
MicroScope Tutorial

Core genome vs. Pan-Genome

- 1. Core genome phylogenetic: are the next level of MLST schema, comparing whole shared genome information coded in the genomes of interest strains.
- 2. Pan-genomics: comparing shared (core genome) and partially shared (accessory genome) genome information and can be used as a workhorse to describe both taxonomical and functional diversity within bacteria.
- The core genome set is logically much smaller than the pan-genome.

The current systematics of Bacteria From morphological traits(A) to Multi Locus Sequence Typing (MLST)

DNA-DNA hybridization of different strains (B), the use of universally conserved 16S rRNA sequence comparison has a cut-o value of 97% identity (C), sequencing of the 16S a single gene phylogenetic analysis (D) and Multi Locus Sequence Typing (MLST) schema uses information of multiple (~7) coding gene sequences (E).

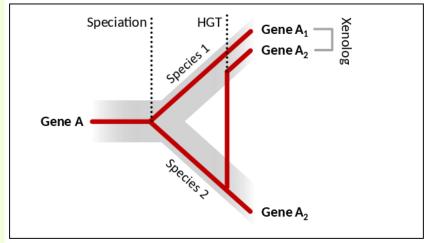

Alcaraz,2014

The Bacterial Pan-Genome Update on the *Burkholderia* pan genome

- Among the more than 35,000 gene families that are represented in the *Burkholderia* pan-genome, a set of 717 core gene families that are conserved across all the *Burkholderia* genomes.
- To display taxonomic groupings and evolutionary relationships, three types of phylogenetic trees were constructed, based on different sets of genetic information:
- 1. 16S rRNA genes,
- 2. multiple locus sequence tags (MLST), and
- 3. pan-genome sequences.

The Bacterial Pan-Genome Relevance of the pan-genome model

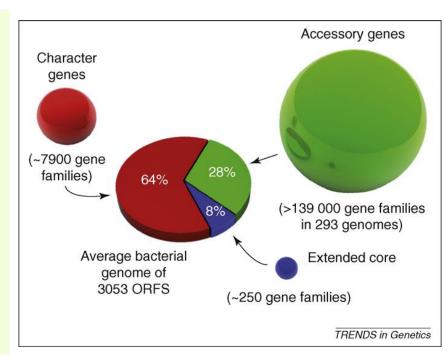
- 1. Evolution of Prokaryote,
- 2. Ecology,
- 3. Pathogenicity,
- 4. Biotechnology.



The predicted pan-genome in *E. coli* comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome (Lukjancenko *et al.*,2010).

Microgen,2013

The Bacterial Pan-Genome Gene families in prokaryotes


- In prokaryotes, gene families could be the result of incomplete xenologous gene replacement by which a gene from another genome gets incorporated into a gene family with which it shares some sequence similarity.
- Xenolog (plural xenologs) (genetics): A type of ortholog where the homologous sequences are found in different species because of horizontal gene transfer.

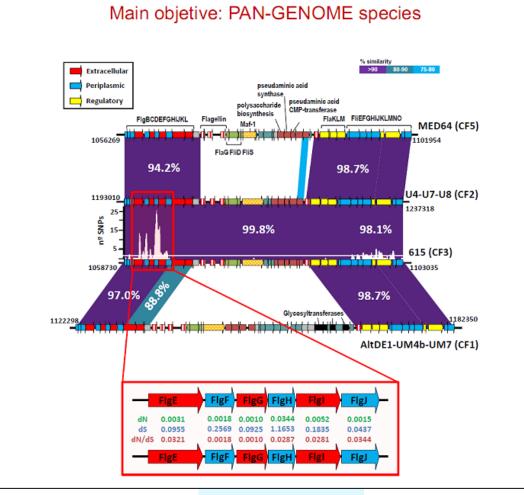
A homologous gene (similar) is a gene inherited in two species by a common ancestor. Orthologous, the copy of the same genes are generated by speciation, not by gene duplication.

The Bacterial Pan Genome The bacterial pan genome is of infinite size

- 1. Analyzed 573 sequenced genomes.
- 2. Chose 15,000 random ORF(open reading frames or protein coding sequences).
- 3. Distinguished 3 groups of ORF.

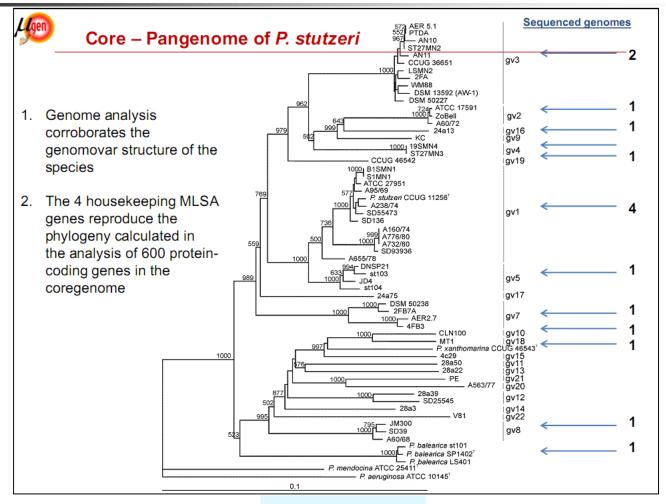
A nucleic acid sequence (DNA or RNA sequence) with a reading frame that contains nonstop (termniation) codons; it can therefore potentially be translated into a polypeptide. Each sequence contains all the information to produce a particular protein.

Lapierre and Gogarten, 2009; Campbell and co-workers;..

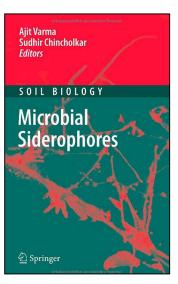

The Bacterial Pan-Genome Intra-species variation 1 genome is NOT enough to represent the species

chimp chicken human worm yeast Eucaryotes 99% 76% 55% 28% 23,621 genes 18,529 genes 19,404 genes 5,885 genes 19,829 genes 19,568 orthologs 14,080 orthologs 10,673 orthologs 1,647 orthologs Prokaryotes E. coli E. coli E. coli E. coli Y. pestis K-12, isolate MG1655 K-12, isolate W3110 **CFT073** HS Antiqua 95% 76% 60% 29% 4150 genes 4226 genes 4378 genes 4364 genes 5339 genes 3843 orthologs 3508 orthologs 1998 orthologs 3399 orthologs PANGENOMA 1 genome is NOT enought to represent the species

Orthologous genes: Genes in different species that are homologous (similar) because they are derived from a common ancestral gene.


Microgen,2013

Pan-genome and Core genome Pan-genome species



Microgen,2013

Pan-genome Pan-genome of *Pseudomonas stutzeri*

Microgen,2013

Siderotyping

Siderotyping is a powerful technique for discriminating species within the genus *Pseudomonas*

Bacterial typing method Siderotyping

- Siderotyping (short for siderophore-typing) has been recently proposed as a rapid and efficient bacterial typing method for identification at the species level of
- Fluorescent, and
- non-fluorescent *Pseudomonas*.

Crude Siderophore crystals

Ali and Vidhale,2013;..

Siderotyping Phenotypic characterization

- A precise taxonomic allocation which parallels the polyphasic taxonomy data can be simply achieved by siderotyping.
- Siderotyping fulfill the demand for fast and reliable species identification.
- It may be useful in identification and systematics of numerous siderophore-producing microbial groups other than fluorescent *Pseudomonas* species including:
- P. corrugata,
- Burkhoderia graminis, etc.
- Siderotyping also proved to be an interesting way to phenotypically discriminate some new species.
- e.g. in characterization of *Pseudomonas tolaasii* and "*Pseudomonas reactans*".

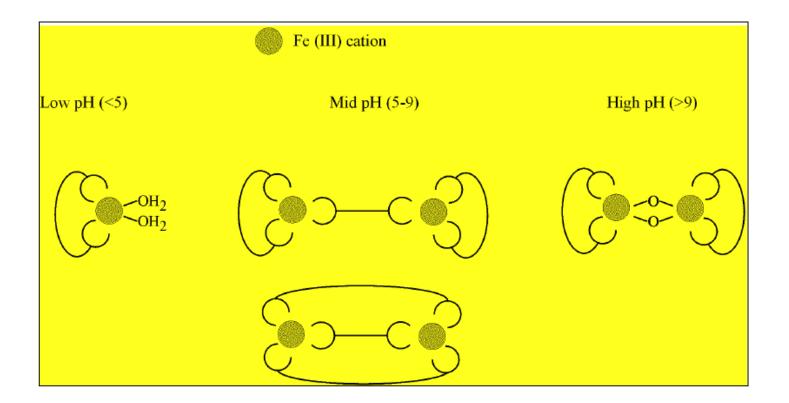
The element iron Fe Need

- Life without iron is impossible.
- Up to 10⁵ Fe-ions are typically required in key metabolic processes of a single bacterial cell.
- Though iron is the fourth most abundant element in the Earth's crust, it is present under aerobic conditions at nearly neutral pH in the form of extremely insoluble minerals like hematite, goethite, and pyrite or as polymeric oxidehydrates, carbonates, and silicates.
- Thus, iron (III) at physiological pH is high insolubile.

The element iron Fe Need

- In fact iron exists in nature either as:
- 1. Ferrous (Fe++), or
- 2. Ferric (Fe+++) ions.
- In the presence of oxygen, iron (II) is rapidly oxidized to iron(III) which precipitates as a polymeric oxyhydroxide.
- Fe(III) is the predominant form of iron in aerobic and microaerobic environments and is highly insoluble.

Fe(IV)	Fe(III)	Fe(II)	Fe(I)
hardest	most common in aerobic environments	most common in anaerobic environments	softest


DuBois,2011;AgriInfo.in©2009

Siderophores Greek: sideros + phore = iron carrier Iron needs of microorganisms

- Under aerobic conditions this essential element is present in the form of insoluble oxide hydrates [Fe₂O₃ 1 nH₂O].
- Most life requires [Fe(III)] ~ mM or 10⁻⁶ M.
- The concentration of Fe(III) is far too low ($\leq 10^{-17}$ M) to sustain the microorganism (10^{-6} M).

$$H^{+}$$
Fe(III) + H₂O \implies [Fe(III)(H₂O)₆]³⁺ $\stackrel{\checkmark}{\longrightarrow}$ {Fe(III)_x(OH)_y(O)_z}
Fe(II) + H₂O \implies [Fe(II)(H₂O)₆]²⁺ (aq)

The element iron At different pH levels

The element iron Availability and Biological need

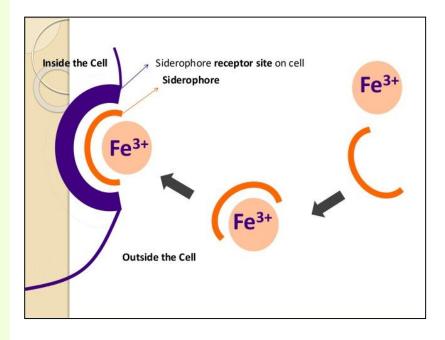
- Plants as well as microorganisms require traces of iron, manganese copper, zinc, molybdenum, calcium boron, cobalt, etc.
- Iron is always abundant in terrestrial habitats, and it is often in an unavailable form for utilization by plants and leads to the serious deficiency in plants.

Siderophores

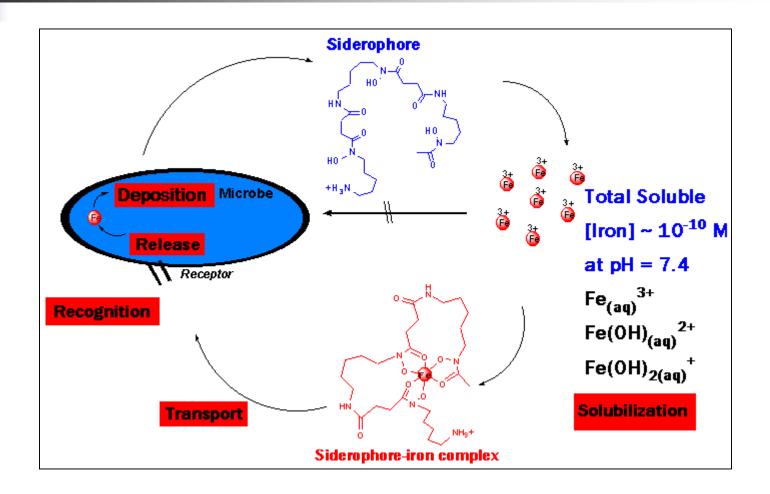
Greek: sideros + phore = iron carrier Iron needs of microorganisms

- Iron is required by aerobic bacteria and other living organisms for a variety of biochemical reactions in the cell. e.g.
- 1. Energy generation by electron transport,
- 2. DNA synthesis, and
- 3. Defense against toxic reactive oxygen species, that the element is indispensable to their survival.
- Aerobic microorganisms need sufficient iron for passive diffusion of ions into the cells and for their normal growth.

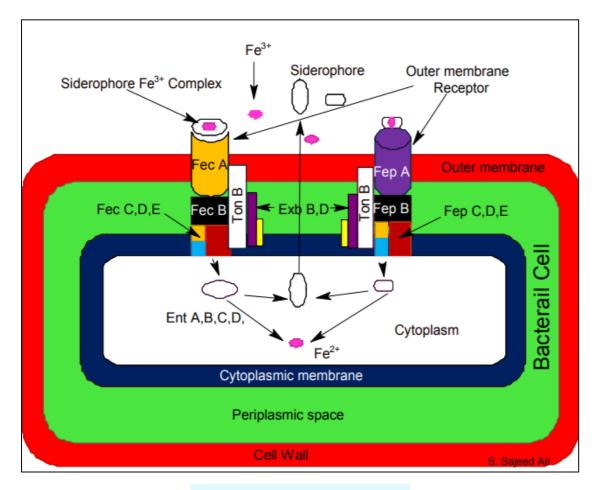
The element iron Iron needs of microorganisms


- Microorganisms can take up iron using two different pathways:
- The first, which takes place at iron concentrations above 1×10⁻⁴ M is a low affinity system based on the diffusion of iron ions through biological membranes.
- The second is a high affinity system that has developed under iron deficiency conditions and consists of an iron chelator – a siderophore.

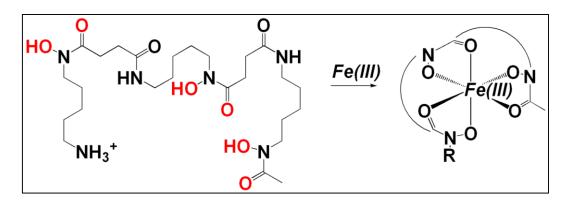
The element iron Availability and Biological need


- Most of the aerobic microorganisms live in an environment where iron exists in the oxidized, insoluble ferric hydroxide form.
- They produce iron-binding compounds (siderophores) in order to take up ferric iron.
- Siderophores are low-molecular-weight compounds (< 1500 Da) possessing a high affinity for Fe (III).
- Siderophores can form water soluble complexes with Fe³⁺.
- After complexation iron (III) is available in a watersoluble form, as ferri-siderophore (ferri-pyroverdine), which can be taken up by microorganisms.

Siderophores Iron acquisition by microorganisms


- To survive in such an environment, organisms were found to secrete ironbinding ligands called siderophores having high affinity to sequester iron from the micro-environment.
- Most microorganisms respond to low-iron stress by producing extracellular, low molecular-weight (500-1000 Daltons), iron transport compounds (or siderophones) which bind iron selectively and with great binding power.

Siderophores Iron acquisition by microorganisms


Siderophores Iron acquisition by microorganisms Mechanism of siderophore mediates iron transport in bacteria

Ali and Vidhale, 2013

Siderophores Iron acquisition by microorganisms

- Siderophores are multidentate chelating ligands with high affinity for Fe (III) and often for other hard cations.
- Many bacteria, fungi, plants produce them.
- Recognize their own and sometimes siderophores from other species.

DuBois,2011

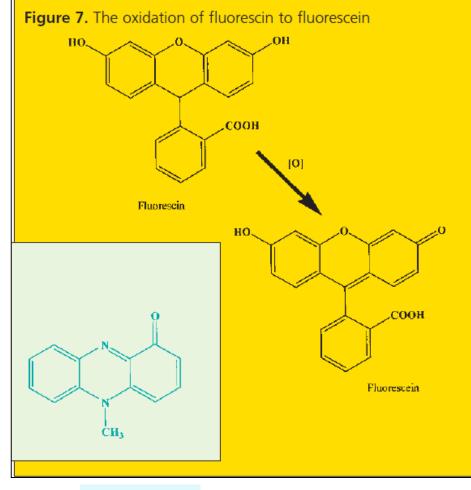
Siderophores Iron acquisition by *Pseudomonas* Pyoverdines

- Pyoverdine, the yellow-green, water-soluble, fluorescent pigment of the fluorescent *Pseudomonas* species, is a powerful iron (III) scavenger and an efficient iron (III) transporter.
- The majority of fluorescent pseudomonads produce complex peptidic siderophores called pyoverdines (Pvds) or pseudobactins, which are very efficient iron scavengers.
- Pyoverdine is the main siderophore produced by fluorescent *Pseudomonas* strains.
- PVDs bind Fe(III) efficiently.

Siderophores Pyoverdines

- A tremendous variety of pyoverdines has been also observed in *Pseudomonas*, each species producing a different pyoverdine.
- Pyoverdines are siderophores containing the pigments (fluorescent).
- This variety can be used as an interesting tool to study the diversity and taxonomy of fluorescent pseudomonads.

Siderophores Iron acquisition by *Pseudomonas* **Other siderophores different from pyoverdines**


- Several other structurally divergent siderophores have also been described for this bacterial genus.
- These also having iron chelating properties. e.g.
- 1. Pyocyanin produced by *P. aeruginosa*,
- 2. Pyochelin produced by *P. aeruginosa*,
- 3. Pseudomonin produced by two *P. fluorescens* strains, and
- 4. 2,6-pyridine dithiocarboxylic acid (PDTC), by *Pseudomonas stutzeri*.
- These are usually produced in smaller amounts than pyoverdine and their affinity for iron are usually much lower.

Siderophores The structure of pyoverdines

- Fluorescent *Pseudomonas* species produce Fe(III)-chelating siderophores (fluorescien) called pyoverdins (PVDs), pyofluorescein or simply fluorescein that fluorescence under UV light.
- The pyoverdines are a large family of complex siderophores which bind metal ions, especially iron, and make structure of beautifully complex molecules.

Siderophores The structure of pyoverdines

Fluorescin: A colorless, amorphous substance which is produced by the reduction of fluorescein.

Moss,2002

Siderophores Numbers of PVDS in different bacteria *Pseudomonas*

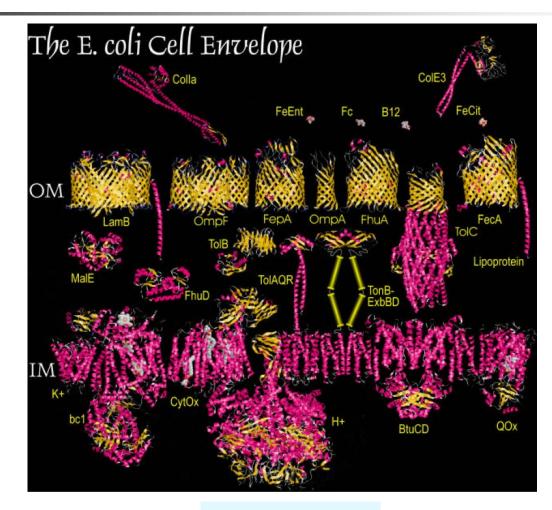
- More than 500 different siderophores have been identified from microorganisms.
- Some bacteria produce more than one type of siderophore. e.g.
- *P. fluorescens* with 12 PVDs, and
- *P. putida* with 12 PVDs.
- It is interesting to know some *Pseudomonas* spp. which are not pigmented (nonfluorescent), still synthesize siderophores. e.g.
- P. stutzeri, P. pseudoalcaligenes, Pseudomonas corrugata.

Siderophores Siderophore transport in microorganisms

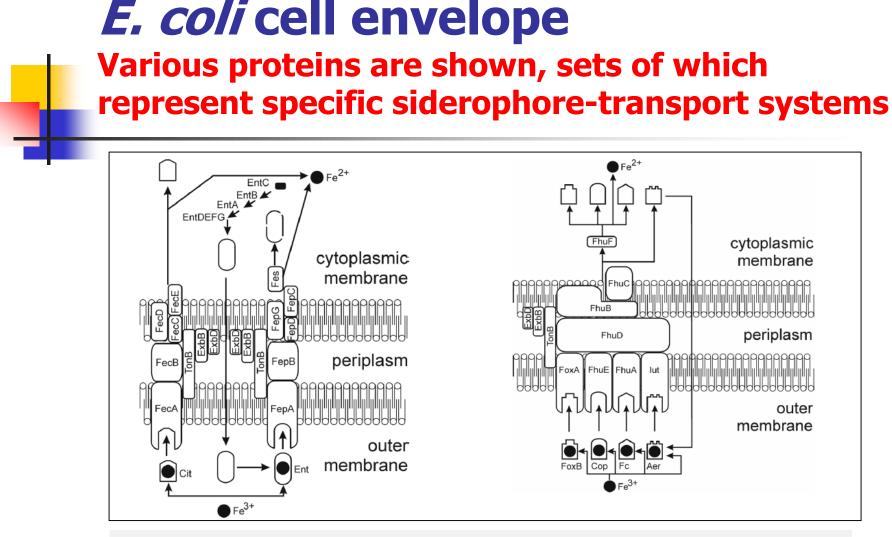
- Siderophore-mediated iron uptake in microorganisms is both
- 1. A receptor- and
- 2. An energy-dependent process.
- Moreover, many receptor-siderophore interactions are very specific.

Siderophores Specific single receptor vs many nonspecific receptors

- Until recently, it was generally assumed that receptors had a strict specificity for the cognate PVD or pseudobactin.
- Recently, however, it was found that the receptor for type II *P. aeruginosa* PVD can also recognize two other PVDs from *P. fluorescens* PL7 and PL8 (Meyer *et al.*,1999;2002b).
- Evidence also exists for the presence of several extra receptors for the uptake of heterologous PVDs not produced by the bacterium.
- Some of *Pseudomonas putida* or *P. fluorescens* strains have a remarkable capacity to use a broad spectrum of heterologous PVDs, whereas their PVDs cannot be used by competitor *Pseudomonas*.


Microorganisms can use either siderophores produced by themselves or siderophores produced by other microorganisms. The cross utilization of pyoverdines by different strains depends on the structure of the peptide part of the siderophore.

Siderophores Iron uptake by soil and water bacteria


- The majority of bacteria and fungi use siderophores to solubilize and transport ferric iron (Fe³⁺) in the environment.
- Siderophore binds Fe³⁺ ions under iron deficiency conditions.
- The complexes Fe-siderophore are identified by specific receptors (TonB proteins) on OM.
- Pseudomonads is their ability to use a large number of heterologous siderophores via different TonBdependent receptors.

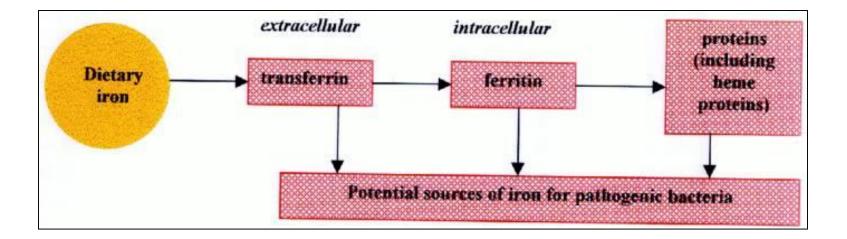
TonB protein of *E. coli* is a very close structure with *P. putida* and *P. aeruginosa*.

Proteins of the Gram-negative bacterial cell envelope TonB proteins

Phillip E. Klebba

Outer membrane receptors (OMR) shown here are FepA (enterobactin), IutA (aerobactin), Fec A (FeIII dicitrate), FhuA (ferrichrome), and FhuE (coprogen, FeIII rhodotorulate, and ferrioxamine B, FoxA (ferrioxamine B).

F. Matzanke


Siderophores Iron uptake by *E. coli*

- Iron is also not freely available in humans and other mammals.
- Most iron is found (stored) intracellularly in
- 1. Heme proteins, and
- 2. Transferrin and Ferritin, the iron storage compounds.
- Iron outside cells is tightly bound to proteins.
- Bacteria that grow in humans or other animals and cause infections must have a mechanism to remove iron from these proteins and use it for their own energy and growth needs.

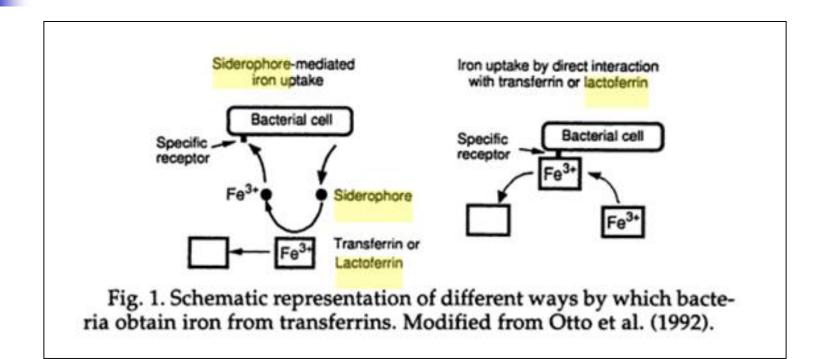
Heme or haem is **a major source of iron**, present in haemoglobin.

McGraw-Hill Concise Encyclopedia of Environmental Science, 2008

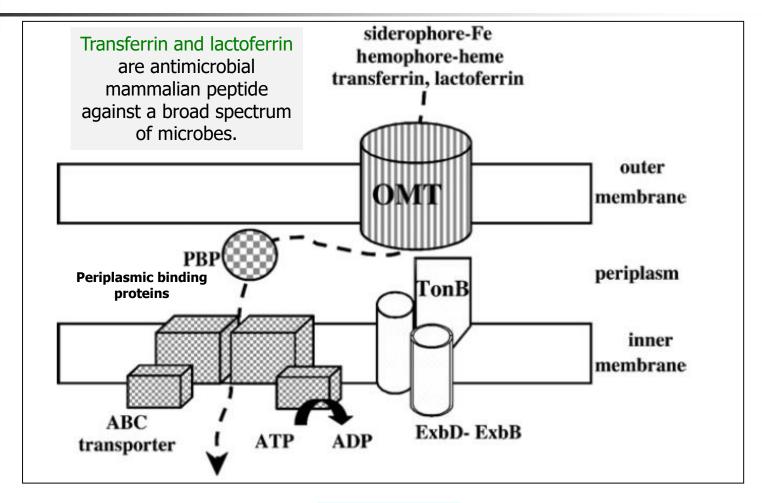
Siderophores Iron uptake by *E. coli*

Ann Rev Microbiol. 54: 881-941,2000

Siderophore functions Iron uptake by *E. coli*

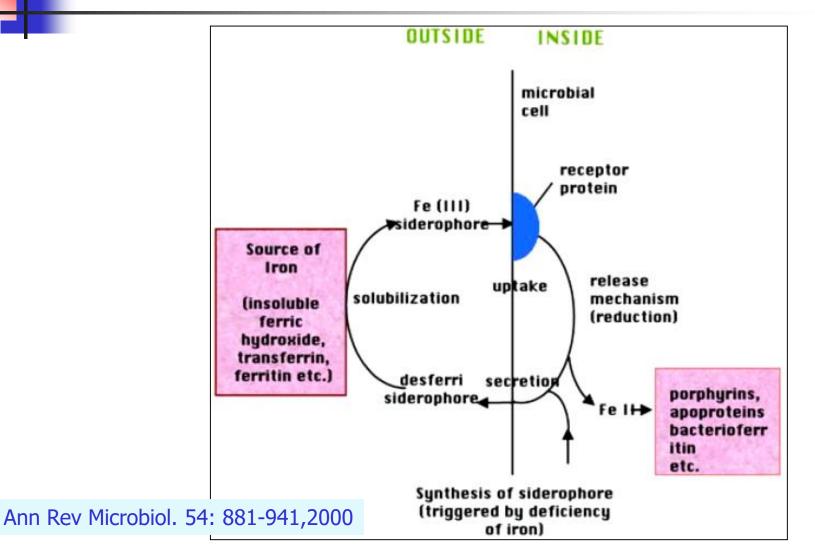

- Outer membrane is the main target for iron uptake.
- Siderophores bind iron(III) before being recognized as ferrisiderophores by specific receptors, which function as gated porin channels in concert with the TonB protein that energizes the receptor protein.
- Iron is delivered by either lactoferrin or transferrin, heme or heme-hemophore, and homologous or heterologous siderophores to specific OMTs located in the outer membrane.
- The OMTs transport iron/iron ligand across the outer membrane and the transport is energized by the pmf of the cytoplasmic membrane via a complex formed of three proteins, TonB-ExbB-ExbD.

Siderophore functions Iron uptake by *E. coli*


- In the periplasm, Fe³⁺, heme, or siderophore-Fe³⁺bind to periplasmic binding proteins (PBPs) that are specific for either Fe³⁺, hem or ferric-siderophore.
- The PBPs deliver the iron compounds to an ABC transporter for the transport across the cytoplasmic membrane.
- The energy required for transport across the cytoplasmic membrane is provided by the hydrolysis of ATP.
- Inside the cell, the iron ion (III) is reduced, the complex disintegrates and the siderophore can be used again.

Ligand: A molecule other than an enzyme substrate that binds tightly and specifically to a macromolecule, usually a protein forming a macromolecule-ligand complex.

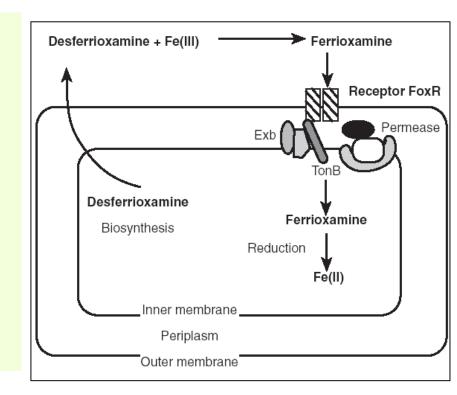
Siderophore functions Iron uptake by Gram-negative bacteria Different ways by which bacteria obtain iron from transferrins



Siderophore functions Iron uptake by *E. coli*

Schalk,2006

Siderophore functions Iron uptake by *E. coli*

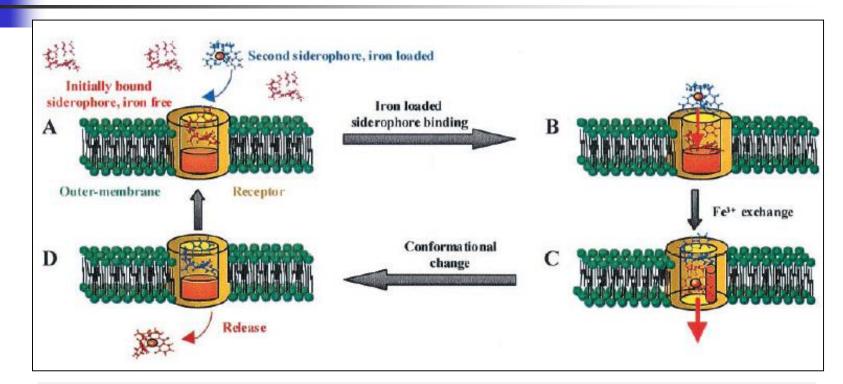

686

Siderophore functions Iron uptake by *Dickeya dadantii* and *Erwinia amylovora*

- Besides the production and utilization of siderophores,
 P. atrosepticum and *D. datantii* have the capacity to use other iron sources.
- Indeed, Dickeya dadantii (Erwinia chrysanthemi) and Erwinia amylovora are able to use haem iron, whereas only P. atrosepticum can transport the ferric citrate complex and only D. dadantii can acquire ferrous iron.
- These different modes of iron capture indicate that these species have to cope with various environmental and ecological conditions during their pathogenic life cycle.

Desferrioxamine E Role in pathogenicity of *E. amylovora*

- Desferrioxamine E is the major siderophore of *E. amylovora*.
- Compounds of the desferrioxamines (DFO family), of which DFO E appeared to be predominantly produced, were identified in various strains of *E. amylovora*.


Siderophore functions

The other proposed siderophore iron uptake and delivery mechanism

- The ligand exchange step occurs at the cell surface and involves the exchange of iron from a ferric siderophore to an iron-free siderophore already bound to the receptor.
- The ferric-siderophore complex must cross the outer membrane and the cytoplasmic membrane before delivering iron within the cytoplasm.
- Once in the periplasmic space, the ferric-siderophore binds to its cognate periplasmic binding protein and is then actively transported across the cytoplasmic membrane by an ATP-transporter system.

Siderophore The other proposed siderophore iron uptake and

delivery mechanism

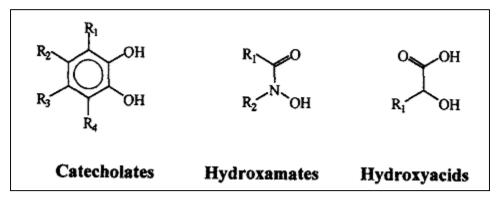
Proposed model of the siderophore shuttle iron exchange mechanism for iron transport in Gram-negative bacteria. The steps involved in binding to the receptor, ligand exchange, and iron translocation.

Stintzi *et al*.,2000

Siderophore synthesis By non-ribosomal peptide synthetases

- Biosynthesis of siderophores is executed on a cellular level by a set of enzymes specific for the respective siderophore.
- These enzymes are known as non-ribosomal peptide synthetases (NRPSs).
- The corresponding genes are located on the chromosome or on a plasmid.
- NRPSs are large multimodular enzymes, which perform non-ribosomal peptide synthesis.

Siderophore production Influence of sigma factors


- In fluorescent pseudomonads, production of PVDs and their cognate receptors is influenced by PvdS an extracytoplasmic sigma factor (ECF).
- PvdS is needed for the transcription of several PVD biosynthesis genes, including NRPSs and other peptide modification genes.
- The alternative sigma factor, RpoS, has been also shown negatively to affect the production of PVD in *P. aeruginosa*.
- In *P. putida*, in contrast, RpoS was found to have no effect on siderophore production.

Siderophore production Influence of quorum-sensing

- Another factor that seems to influence PVD production is the quorum-sensing system.
- In *P. aeruginosa*, it was found that mutants in the lasI/lasR quorum-sensing genes produced half the amount of PVD compared with the wild type.
- Whiteley et al.,1999 found that the pvdI gene, encoding one of the NRPSs (non-ribosomal peptide synthetases) for the biosynthesis of the peptide chain of PVD, is controlled by quorum-sensing autoinducers.

Siderophores Four types of siderophores in bacteria

- Bacteria produce four types of siderophores:
- 1. hydroxymate (OH-group).e.g. aerobactin in *E. coli*,
- 2. catecholate (phenolates). E.g. enterobactin from *E. coli*.
- Salicylate (salicylic acid, a siderophore of *Pseudomonas fluorescens* CHAO), and
- 1. carboxylate (e.g. derivatives of citric acid). Citric acid can also act as a siderophore.

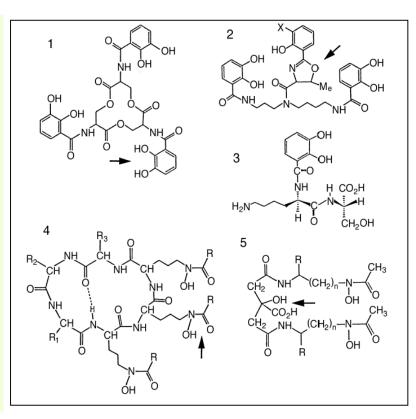
Siderophore types

Examples of siderophores produced by fluorescent pseudomonads and non-fluorescent pseudomonads

Siderophore	Organism
Fluorescent pseudomonads	
Pyoverdine	P. fluorescens
Pyochelin	<i>P. aeruginosa</i> PAO1
Pseudobactin	<i>P. putida</i> B10
Non-fluorescent pseudomonads	
Desferriferrioxamine E	P. stutzeri
Corrugatin	P. corrugata

Desferrioxamine E is produced mainly by the *Erwinia amylovora* but also by *Streptomyces coelicolor* and *P. stutzeri*.

Wikipedia, 2011; Chie, 2014


Siderophore types Hydroxamate siderophores produced by some other bacteria and fungus

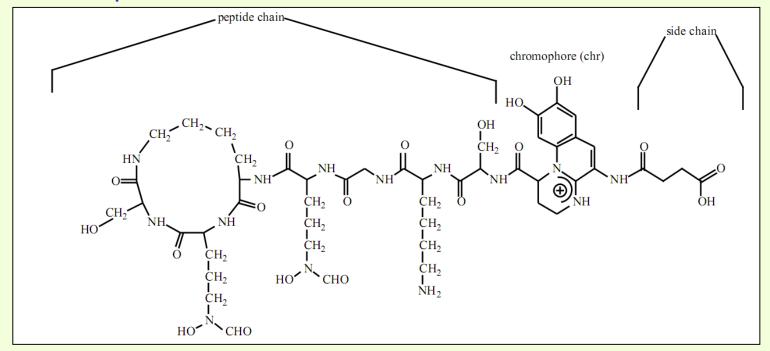
- Hydroxamate group-bearing siderophores are mainly synthesized by fungi and Gram-positive filament-forming bacteria (streptomycetes).
- Actinomycetes produce both hydroxymate and salicylate types of siderophores.

Siderophore	Organism
Ferrichrome	Ustilago sphaerogena
Desferrioxamine B (Deferoxamine)	<i>Streptomyces pilosus Streptomyces coelicolor</i>
Desferrioxamine E	Streptomyces coelicolor
Fusarinine C	Fusarium roseum
Ornibactin	Burkholderia cepacia

Siderophore types Structure of some microbial siderophores

- Siderophores containing catechol ligands:
- 1. Enterobactin or enterochelin by *E. coli*.
- 2. Chrysobactin by *Dickeya chrysanthemi*.
- Hydroxamate siderophores:
- 4. Desferrichrome E by *E. amylovora*.
- 5. Agrobactin by *A. tumefaciens*.
- Iron (III) ligands are shown by arrows.

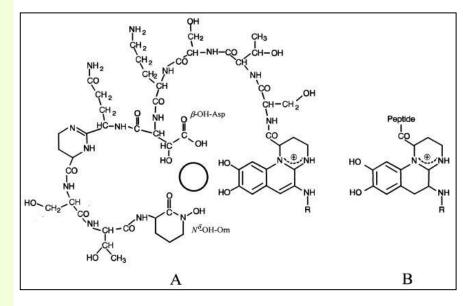
Catechol is the conjugate acid of a chelating agent. Basic solutions of catechol react with iron(III) to give the red $[Fe(C_6H_4O_2)_3]^{3-}$.


Vanneste,2000

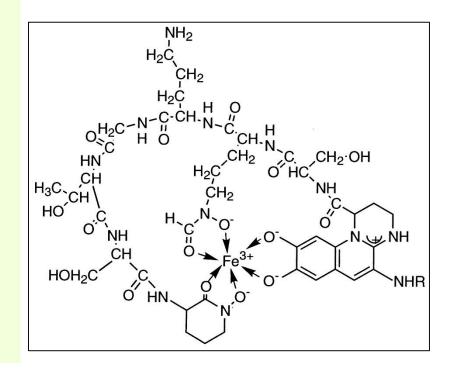
Pyoverdine structure Pyoverdine structural parts *Pseudomonas*

- A molecule of pyoverdine consists of three parts:
- 1. A conserved dihydroxyquinoline chromophore;
- 2. A peptide chain with 6 to 12 amino acids, depending on the producing strain. The peptide chains vary among strains and species.
- 3. A side chain, usually a dicarboxylic acid or its amide.
- Many structures of PVDs, differing mainly in their peptide chain(amino acid sequence of the peptide chain).
- These structural differences are used in the siderotyping of bacteria belonging to the genus *Pseudomonas.*

Pyoverdine structure Pyoverdine from *P. fluorescens*


 Dihydroxyquinoline-based chromophore that is responsible for iron binding and an N-terminal side chain bound to the chromophore.

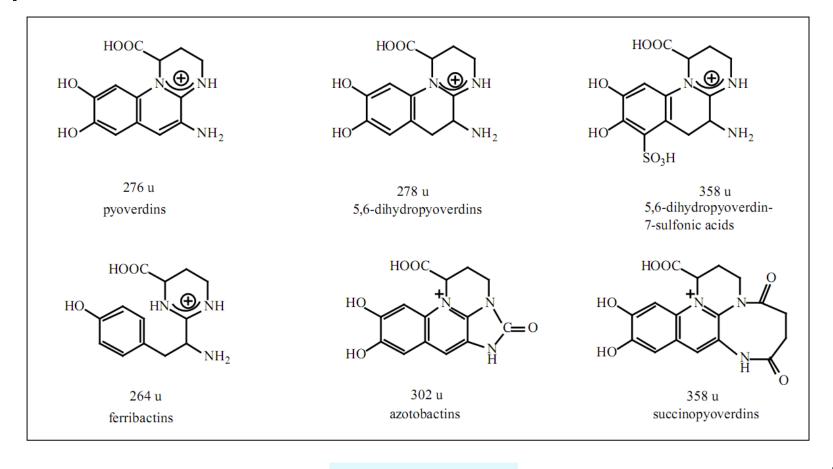
Fuchs *et al.*,2001; Drake and Gulick,2011


Pyoverdine structure Example of a pyoverdin (A) and the cognate dihydropyoverdin (B) produced by a *P. putida* strain

- The circle in the center of the molecule (A) indicates the place where the iron is chelated.
- Both hydroxyl groups on the chromophore and FHO (N-formyl-Nhydroxy-ornithine) side chain oxygens form interactions with iron.

Pyoverdine structure Structure of *P. aeruginosa* pyoverdine

- The acyl chain (R group) could be:
- 1. Succinic acid,
- 2. Succinamide, or
- 3. Glutamic acid.

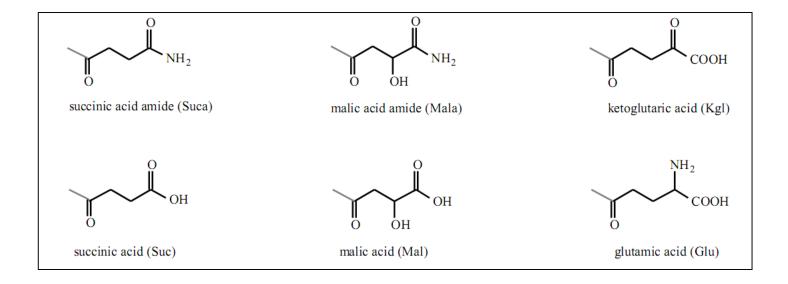

Pyoverdine structure 1. Peptide chain

- Comprising 6 to 12 amino acids, depending on the producing strain.
- The sequence of the peptide chain is usually strainspecific but can vary within a species.
- The peptide chain has two functions:
- 1. It provides two ferric iron binding sites, and
- 2. Is responsible for identifying the complex of siderophore and iron (ferri-pyoverdine molecule) on the surface of the producing cell by specific receptors located in the outer membrane.

Pyoverdine structure 2. Quinoline chromophore

- Imparts the color and fluorescence to the molecule.
- The chromophore is identical for all pyoverdines and its catechol unit is one of the binding sites for iron(III).
- Heterogeneity of pyoverdines is due to the of the chromophore and side chain part.
- Presence of different chromophors are different in:
- 1. color,
- 2. Fluorescence, and
- 3. UV/Vis-spectra.

Pyoverdine structure Chromophore types that are produced along with the one of pyoverdine


Fuchs et al.,2001

Pyoverdine structure 3. Acyl side chain

- The amino group of the chromophore is bound to a dicarboxylic acid side chain or its amide.
- The pyoverdines of the same bacterial strain differ only in the structure of the acyl side chain.
- The appearance of different side chains leads to different pIvalues (useful for characterizing the pyoverdine bands) and allows the separation of the compounds through chromatography and electrophoresis.

Pseudomonas	Peptide chain identical with	Side chain
P. fluorescens	P. fluorescens 13525	ketoglutaric acid (Kgl)
P. fluorescens	P. fluorescens 13525	succinic acid amide (Suca)
<i>Pseudomonas</i> sp.	P. fluorescens 13525	succinic acid (Suc)

Pyoverdine structure Acyl side chains of pyoverdine chromophores and related compounds

Pyoverdine structure Peptide chain contains common and uncommon amino acids

- Amino Acids of Pyoverdines (amino acids involved in the Fe³⁺-complexation with chelating functionalities are printed in bold).
- Siderovars: Regroup strains that produce pyoverdins with the same peptide chain.

Amino acids of pyoverdines		
Proteinogenic amino acids	Unusual (non-proteinogenic) amino acids	
Ala	2,4-diaminobutyric acid (Dab)	
Asn	β-hydroxy-Asp	
Asp	β-hydroxy-His	
Arg	<i>cyclo</i> -N-hydroxy-Orn	
Gln	N-formyl-N-hydroxy-Orn	
Glu	N-acetyl-N-hydroxy-Orn	
Gly	N-hydroxybutyryl-N-hydroxy-Orn	
Lys	Orn	
Ser		
Thr		
Val ³		

Siderotyping methods

- The purified pyoverdins were analysed by the following microbiological and bioanalytical methods:
- Growth stimulation (microbiological methods (visual tests) in order to evaluate the biological activity of pyoverdine against selected plant pathogens);
- 2. Iron uptake (uptake specificity; cross uptake);
- 3. PVD isoelectric focusing (IEF patterns);
- 4. PCR protocol for detection of siderophore
- 5. Immunoblotting (serological methods);
- 6. Amino acid analysis;
- 7. Mass spectrometry along with chemical degradation and synthesis.

Microbiological methods Detection of siderophores 1. Visual tests

- The CAS (Chrome Azurol S) solid and liquid media were prepared and stored at 4°C for several months.
- 1. Petri dishes assay
- 2. Glass tubes assay
- Since this media is very sensitive to variations in pH or FeCl₃concentrations, it may be useful to perform a quality control test prior to using the plates in the lab.

CAS agar preparation Schwyn and Neilands, 1987

- The following is a detailed, step-by-step procedure taken from Schwyn and Neilands (1987). Preparing the CAS agar can be a tedious and difficult process. By providing a detailed protocol for doing this, we hope to reduce the difficulty.
- Clean all glassware with 6M HCl to remove any trace elements, then rinse with ddH_2O .
- A. Blue Dye:
- a. Solution 1:
- i. Dissolve 0.06 g of CAS (Fluka Chemicals) in 50 ml of ddH_2O .
- b. Solution 2:
- i. Dissolve 0.0027 g of $FeCl_3$ -6 H_2O in 10 ml of 10 mM HCl.
- c. Solution 3:
- i. Dissolve 0.073 g of HDTMA in 40 ml of ddH_2O .
- d. Mix Solution 1 with 9 ml of Solution 2. Then mix with Solution 3. Solution should now be a blue color. Autoclave and store in a plastic container/bottle.
- B. Mixture solution:
- a. Minimal Media 9 (MM9) Salt Solution Stock
- i. Dissolve 15 g KH_2PO_4 , 25 g NaCl, and 50 g NH_4Cl in 500 ml of ddH_2O .
- b. 20% Glucose Stock
- i. Dissolve 20 g glucose in 100 ml of ddH_2O .
- c. NaOH Stock

CAS agar preparation Schwyn and Neilands, 1987 Continued

- i. Dissolve 25 g of NaOH in 150 ml ddH₂O; pH should be \sim 12.
- d. Casamino Acid Solution
- i. Dissolve 3 g of Casamino acid in 27 ml of ddH_2O .
- ii. Extract with 3% 8-hydroxyquinoline in chloroform to remove any trace iron.
- iii. Filter sterilize.
- C. CAS agar Preparation:
- a. Add 100 ml of MM9 salt solution to 750 ml of ddH_2O .
- **b.** Dissolve 32.24 g piperazine-N,N'-bis(2- ethanesulfonic acid) PIPES.
- i. PIPES will not dissolve below pH of 5. Bring pH up to 6 and slowly add PIPES while stirring. The pH will drop as PIPES dissolves. While stirring, slowly bring the pH up to 6.8. Do not exceed 6.8 as this will turn the solution green.
- c. Add 15 g Bacto agar.
- d. Autoclave and cool to 50°C.
- e. Add 30 ml of sterile Casamino acid solution and 10 ml of sterile 20% glucose solution to MM9/ PIPES mixture.
- f. Slowly add 100 ml of Blue Dye solution along the glass wall with enough agitation to mix thoroughly.
- g. Aseptically pour plates.

Louden et al.,2011

CAS liquid/agar medium With original and modified compositions

- 1. CAS-liquid medium (MM9):
- Tris buffer, casamino acids 0.3%, sucrose 0.2%,thiamine HCl 0.0002%, and succinate 0.2%, w/v).
- 2. Modified CAS-agar medium:
- 200 ml of blue agar with 20 ml resultant dark blue liquid, 150 ml double distilled-deionized water, 20 ml 10× MM9 salts, 3 g agar, 2.4 g of a 50% (w/w) NaOH solution, 6 ml casamino acids (10%, w/v), 2 ml glucose (10%, w/v), 0.2 ml thiamine.HCl (0.2%, w/v), and 0.6 ml L-tryptophan (1%, w/v), respectively.

Detection of siderophores

Siderophore production on a CAS siderophore testing agar Petri dishes assay


- The chelator-iron (III) complex tints the agar (Chrome Azurol S(CAS)-agar plate) with a rich blue background.
- The color change from blue to orange halo around the colony of *Pseudomonas putida* indicates the excretion of siderophore and its dimension approximates the amount of siderophore produced.

Detection of siderophores

Siderophore production on a CAS siderophore testing broth Liquid CAS solution

- The Fe(III) gives the agar a rich blue color and concentration of siderophores excreted by iron starved organisms results in a color change to orange.
- After inoculating it takes only a short time before a color change will occur usually no more that 6 hours.

The change in color of the blue dyechrome azurol sulphonate (CAS) assay solution to orange indicating the presence of siderophore.

Microbiological methods

Inhibition of the mycelium of *Fusarium solani* growth in the presence of the purified pyoverdine *P. putida*

- The experiments were carried out using:
- KB medium (Photo 2a, b) as well as
- KB medium that had been previously depleted of iron (Photo 2c, d).

b) KB medium + pyoverdine

c) KB-iron control

d) KB-iron + pyoverdine

Isolation of pyoverdins Complementary tests

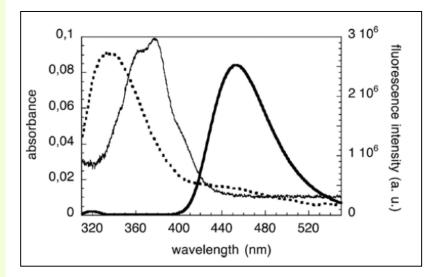
- The bacteria were grown in SSM mineral medium.
- The final pH of the medium was adjusted to 7.0 with 2 M solution of NaOH.
- All culture media were prepared using deionized water.
- All laboratory glass was kept in a 2 M HCl for 12 h and then rinsed several times with deionized water.
- The bacteria were grown at 28°C with shaking (120 rpm) for 72 h and then were spun down in Sigma centrifuge at 24000×g.
- The obtained supernatant was taken as a source of pyoverdine.
- Intensity of bacterial growth was monitored based on optical density of the media (OD 550nm).

2. Purification of pyoverdins General method

- The method of Meyer and Abdallah,1978.
- The pyoverdins produced in succinate medium were extracted with chloroform/phenol from the culture supernatants followed by separation in Sephadex CM25 column chromatography and eluting with 0.2 M pyridine/acetic acid buffer (pH 6.5).
- The compounds were rechromatographed twice on CM Sephadex.
- Iron-free pyoverdins were obtained by mixing the purified ferric pyoverdins with EDTA solution (1M) at pH 7 for 30 min.
- This was then applied to a Sephadex G25 gel filtration column to separate the pyoverdin from the ferric EDTA complex.
- Pyoverdine in column was eluted with 20 mM acetate buffer (pH 5.0) containing 100 mM NaCl.
- Fractions of 1.6 ml were collected.

Ethylenediaminetetraacetic acid(EDTA) is mainly used to sequester metal ions in aqueous solution.

3. Detection of siderophores 3.1. Spectrophotochemical detection of siderophore production

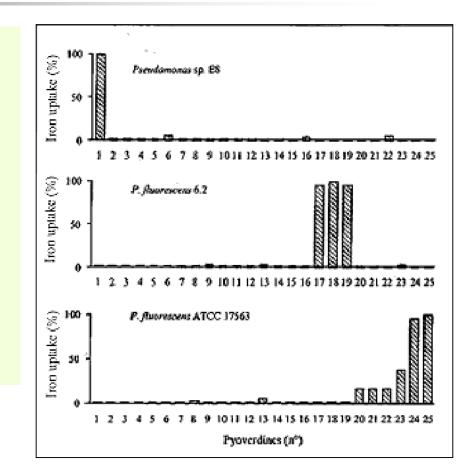

- The presence of pyoverdine was determined photometrically by measuring absorbance at λ_{405} .
- The content of pyoverdine was calculated taking into account the value of the molar absorbance coefficient 20000 mol⁻cm⁻¹(Meyer J.M., Abdallah M.A.,1978).

3. Detection of siderophores 3.1. Spectrophotochemical detection of siderophore production

- Each strain was grown for 3 days in one petri dish containing 10 ml of GASN liquid medium and one block of GASN agar medium.
- Then 36 µl of an FeCl₃ solution (1 M) was added, and the cultures were shaken for 20 min, centrifuged (20 min, 10,000 × g), and filtered.
- The pH was modified between pH 3.0 and 7.0, and the colors of the solutions were noted.
- After being possibly diluted three times, when the siderophores were too concentrated to be directly analyzed, the culture media equilibrated at pH 7.0 were analyzed with UV-VIS spectrophotometer, starting from 700 to 360 nm.
- Liquid GASN medium was used as a control.

3. Detection of siderophores 3.1. Spectrophotochemical detection of siderophore production **Spectral properties of pyoverdins**

- UV spectrum of iron-free Pvd (thin line), fluorescent spectra of purified FpvA (dotted line), and iron-free Pvd (thick line).
- For the UV spectrum of iron free Pvd (thin line), Pvd was dissolved in pyridine-acetic acid buffer pH 5.0.
- 2. For the fluorescent spectra of purified FpvA (dotted line) and iron-free Pvd (thick line) the excitation wavelength was set at 290 and 380 nm, respectively.
- The protein and iron-free Pvd were dissolved in Tris-HCl buffer pH 8.0 and 1% (v/v) octyl-POE.



3. Detection of siderophores 3.2. Iron uptake specificities

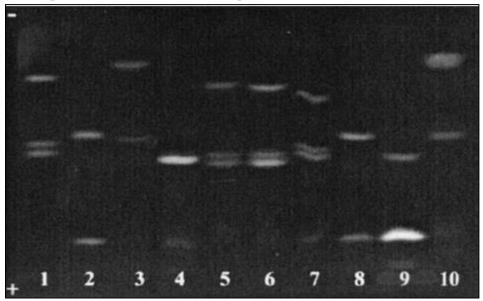
- Another efficient biological way to discriminate pyoverdines is to define their iron transport capacities.
- Cellular ⁵⁹Fe radioactivity was measured after 20 min incubation of the iron starved cells with the respective (⁵⁹Fe) iron-pyoverdine complexes and expressed as the percentage of label reached with the homologous pyoverdine:
- PVD n° 1 for *Pseudomonas* sp. E8
- PVD n° 18 for *P. fluorescens* 6.2
- PVD n° 25 for *P. fluorescens* ATCC (17563).

Iron uptake specificities of *Pseudomonas* sp.

- Iron uptake specificities of:
- Pseudomonas sp. E8,
- P. fluorescens 6.2 and
- *P. fluorescens* ATCC 17563 towards 25 pyoverdines originated from different bacterial strains.

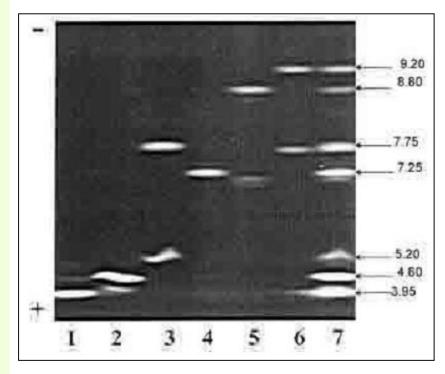
3. Detection of siderophores

3.3. Isoelectrophoretic patterns of pyoverdines Characterization of bacterial PVDs by IEF


- So far, about half of the ca. 50 published structures correspond to pyoverdines were first detected by means of siderotyping techniques.
- A comparison of IEF (isoelectric focusing) patterns and uptake specificity with those of known pyoverdine strongly suggested that the selected compounds should correspond to new structures.

3. Detection of siderophores Isoelectrophoretic patterns of pyoverdines Characterization of bacterial PVDs by IEF

- PVDs produced by different strains of fluorescent pseudomonads can easily be differentiated from each other by isoelectric focusing of partially purified siderophores, as the different peptides result in PVDs with different pIs that can be visualized directly under UV light.
- Electrophoresis of PVDs on ampholine-containing polyacrylamide gel (PVD-IEF) results in the separation of the different molecular forms of PVD present in the supernatant of an iron-starved fluorescent pseudomonad culture.
- Strains belonging to the same group usually developed an identical pyoverdine-IEF pattern.


PVD-IEF patterns

 10 different PVD-IEF patterns were observed upon analyzing the culture supernatants of the *P. tolaasii* and "*P. reactans*" strains grown under iron-deficient conditions (CAA medium).

PVD-IEF patterns Pyoverdine isoelectric focusing profile

- lane 1, *P. putida* strain C; lane
 2, *P. putida* ATCC 12633; lane
 3, *P. fluorescens* strain ii; lane
 4, *P. rhodesiae* CFML 92-104; lane 5, *P. aeruginosa* ATCC
 15692; lane 6, *P. fluorescens* strain 1.3.
- Lane 7 represents the isoelectrophoretic pattern of an equal mix of the pyoverdines depicted in lanes 1 to 6 which could be used as an internal standard for pyoverdine isoelectrophoretic pH (pI) determination.
- The pI values indicated on the right side were determined by the gel slicing method.

PVD-IEF patterns A precise pI(pyoverdine isoelectrophoretic pH) determination

- The appearance of different side chains leads to different pI-values (pH at the isoelectric point of a compound) and allows the separation of the compounds through chromatography and electrophoresis.
- Each band could be characterized by the pH value measured at the place on the gel where the PVD isoform localizes.

A precise pI determination pI values Method

- A precise pI determination is useful for characterizing the pyoverdine bands.
- The commercially available pI standard mixture made of proteins is not convenient since it requires a Comaasiie Blue staining with several steps that in the case of pyoverdines leads to their decomposition.
- Therefore, a direct measurement of the pH reached at different portions of the gel is done by slicing the gel in 0.5 cm bands.
- Each band is incubated in 2ml of a 10 mM KCl solution for 30 min, the pH of the solution being measured with a mini electrode-equipped representative of the pH gradient on the gel, which allows the determination of the pH value at the place of the gel pH-meter.

pI-values of different pyoverdines (peptide chains) as determined by the silicing method

Strain	Pyoverdine peptidic structure ^a	pI values ^b
P. putida C	Asp-BOHOm-Dab-Thr-Gly-Ser-OHAsp-Thr	(5.2), (4.65), 3.95
P. putida ATCC 12633	Asp-Lys-OHAsp-Ser-Thr-Ala-Glu-Ser-cOHOrn	4.6 , (4.0)
P. fluorescens ii	<u>Ala-Lys</u> -Gly-Gly-OH <u>Asp-Gln-Ser</u> -Ala- <u>Ala</u> -Ala-COHOrn	7.75, 5.2
P. rhodeslae CFML92-104	Ser-Lys-FOHOm-Ser-Ser-Gly-c(Lys-FOHOrn-Ser-Ser)	(8.4), (7.35), 7.25
P. aeruginosa ATCC 15692	Ser-Arg-Ser-FOHOrn-c(Lys-FOHOrn-Thr-Thr)	8.8, (8.7), 7.0, (6.9)
P.fluorescens 1.3	Ala-Lys-Gly-Gly-OHAsp-Gln/Dab-Gly-Ser-cOHOrn	9.2, 7.2

- Values in parentheses correspond to minor bands.
- Values in bold characters correspond to the major bands used as internal standards (see previous slide).

pI values of PVDs of *P. tolaasii* and "*P. reactans*" strains and grouping of the strains into siderovars.

Bacterial strain	Origin	pI values of PVD isoforms	Siderovar
LMG 2342 ^T	LMG Collection ^a	9.1, 7.5, 7.3	7
LMG 6641	LMG Collection	9.1, 7.5, 7.3	
PS8.2	Venlo, The Netherlands	9.1, 7.5, 7.3	
PS8.5	Venlo, The Netherlands	9.1, 7.5, 7.3	
PS8.14 PS8.14V	Venlo, The Netherlands This study	9.1, 7.5, 7.3 9.1, 7.5, 7.3	P. tolaasii sv. 1
PS0.14 V PS19.2	Mutzig, France	9.1, 7.5, 7.3	
PS19.12	Mutzig, France	9.1, 7.5, 7.3	
PS20.1	Dassel, Germany	9.1, 7.5, 7.3	
PS22.2	Oulu, Finland	9.1, 7.5, 7.3	
PS3a	Kiukainen, Finland	7.7, 5.3	7
PS3c	Kiukainen, Finland	7.7, 5.3	
PS3d	Kiukainen, Finland	7.7, 5.3	
PS3e	Kiukainen, Finland	PVD^{-b}	P. tolaasii sv. 2
PS7.5	Kiukainen, Finland	7.7, 5.3	1.1010031 31.2
PS7.10	Kiukainen, Finland	7.7, 5.3	
PS9.4	Kiukainen, Finland	7.7, 5.3	
PS12.1	Kiukainen, Finland	7.7, 5.3	
PS12.4 PS12.5	Kiukainen, Finland Kiukainen, Finland	7.7, 5.3 7.7, 5.3	
			- -
PL24.1 PL24.14	Kurjenkylä, Finland Kurjenkylä, Finland	9.2, 7.6 9.2, 7.6	"P. reactans" sv. 1
			-
PS8.1	Venlo, The Netherlands	7.2, 5.2	
PS8.21	Venlo, The Netherlands	7.2, 5.2	
PS11.4	Venlo, The Netherlands	7.2, 5.2	
PS16.18 PS18.10	Mellerud, Sweden	7.2, 5.2 7.2, 5.2	
PS18.10 PL21.4	Rödeby, Sweden Creil, France	7.2, 5.2	
PL5.13	Humppila, Finland	7.2, 5.2	"P. reactans" sv. 2
PS21.4	Yläne, Finland	7.2, 5.2	1.1.64664410 0.112
PL23.3	Kurjenkylä, Finland	7.2, 5.2	
PL24.10	Kurjenkylä, Finland	7.2, 5.2	
PL26.16	Jämijärvi, Finland	7.2, 5.2	
PL28.3	Jämijärvi, Finland	7.2, 5.2	
PL28.10 PL 20.1	Jämijärvi, Finland Jämijärvi, Finland	7.2, 5.2	
PL30.1	Jämijärvi, Finland	7.2, 5.2	-
PS7.2 PL25.2	Kiukainen, Finland	8.9, 7.3, 7.1	"P. reactans" sv. 3
PL23.2	Kurjenkylä, Finland	8.9, 7.3, 7.1	
LMG5329	LMG Collection	8.8, 7.3, 7.1	
PS8.6	Venlo, The Netherlands	8.8, 7.3, 7.1	
PS8.12	Venlo, The Netherlands	8.8, 7.3, 7.1	"D
PS11.10 PS13.10	Venlo, The Netherlands	8.8, 7.3, 7.1	"P. reactans" sv. 4
PS15.10 PS16.14	Kiukainen, Finland Mellerud, Sweden	8.8, 7.3, 7.1 8.8, 7.3, 7.1	
PS19.6	Mutzig, France	8.8, 7.3, 7.1	
PS20.11	Dassel, Germany	8.8, 7.3, 7.1	
PS3b	Kiukainen, Finland	8.4, 7.4, 7.3	٦
PS6.4	Kiukainen, Finland	8.4, 7.4, 7.3	"P. reactans" sv. 5
PL10.9	Vantaa, Finland	7.6, 5.3	"P. reactans" sv. 6
PL4.14	Humppila, Finland	7.3, 5.4	7
PL4.14 PL4.20	Humppila, Finland	7.3, 5.4	
PL21.3	Yläne, Finland	7.3, 5.4	"P. reactans" sv. 7
PL26.3	Jämijärvi, Finland	7.3, 5.4	
PL29.9	Jämijärvi, Finland	7.3, 5.4	
PL29.12	Jämijärvi, Finland	7.3, 5.4	_
PL4.6	Humppila, Finland	9.2, 7.7	Г
PL5.5	Humppila, Finland	9.2, 7.7	
PS6.10	Kiukainen, Finland	9.2, 7.7	"P. reactans" sv. 8
PS12.14	Kiukainen, Finland	9.2, 7.7	
PS14.1	Kiukainen, Finland	9.2, 7.7	
PS14.8	Kiukainen, Finland	9.2, 7.7	

Cross uptake studies Cross-reactivity

- Pvds of *Pseudomonas* species, usually restricted to the producer strain or to strains producing an identical compound.
- However, cross-reactivity does also occur.
- This may pose uncertainty for relying on siderotyping methods.
- Also promising future is expected from recent developments which indicate that pyoverdines might be considered as potent and easy-to-handle taxonomic markers for the fluorescent species of the genus *Pseudomonas*.

Cross uptake studies involving 25 strains of fluorescent Pseudomonads and their respective pyoverdines

- Cross uptake studies involving 25 strains of fluorescent Pseudomonads and their respective pyoverdines.
- The squares in dark grey correspond to groups of strains involving within each group pyoverdines with identical IEF patterns.
- Light grey squares correspond to assays with pyoverdines presenting some differences in their IEF patterns.

Bacterial Strains								Iron	upt	ake	as n	edia	ated	by p	yov	erdi	ne of	stra	in n	۰						
Bacterial Strains	n°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Pseudomonas sp. E8	1	++																								
P. syringae ATCC 19310	2		++																							
P. fluorescens 9AW	3			++																						
P. putida ATCC 12633	4				++																					
P. fluorescens 51W	5					++																				
P. fluorescens ii	6					+	++																			
P. aeruginosa Pa6	7							++																		
P. fluorescens CCM 2798	8								++																	
P. fluorescens CHAO	9									++																
P. tolaasii	10										++															
P. aeruginosa ATCC 27853	П											++														
P. aptata Ps4a	12												++	++												
Pseudomonas sp. SB8.3	13												++	++												
P. putida strain Gwose	14														++	++										
P. fluorescens ATCC 17400	15														+	++	++									
P.fluorescens 1.3	16														+	++	++									
Pseudomonas sp. 267	17																	++	++	++						
P.fluorescens 6.2	18																	++	++	++						
Pseudomonas sp. B10	19																	++	++	++						
P. chlororaphis ATCC 9446	20																				++	++	++	+		
P.fluorescens 10CW	21																				++	++	++	+		
P. fluorescens ATCC 13525	22																				++	++	++	+		
P. fluorescens ATCC 15692	23																				+	+	+	++	+	+
P. fluorescens 18.1	24																				+	+	+	+	++	++
P. fluorescens ATCC 17563	25																				+	+	+	+	++	++

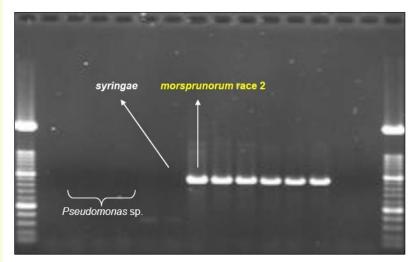
Fuchs et al.,2001

PCR protocol for detection of siderophore Useful in identification of some pvs. of *Pseudomonas syringae* Yersininabactin gene, *irp1*

- The siderophore pyoverdin, produced by all fluorescent strains of *P. syringae*, is a character used for diagnosis (Bultreys *et al.*,2003).
- Among stone fruit pathogens, the siderophore versiniabactin is produced by the pathovars *morsprunorum* race 2, *avii*, and *persicae* and, generally, by genomospecies 3, 7 and 8 of *P. syringae* (Bultreys *et al.*,2006).
- Pyoverdin is not involved directly in pathogenicity of *P.* syringae pv.syringae but is a virulence factor for *P. syringae* pv.tabaci.
- The *irp1* gene encoding a polyketide synthase/peptide synthetase involved in yersiniabactin synthesis is used in diagnostics.

Role of siderophore yersiniabactin

The siderophores pyoverdin and yersiniabactin play a (possibly indirect) role in pathogenesis and in competition with other microorganisms on plant surfaces(ecological role).


PCR for detection of two toxins and yersiniabactin siderophore Differentiate pvs. *syringae, morsprunorum* and *avii*

pv. syringae a	nd P. s. pv. avi	i	
Bacterium	PCR <i>cfl</i> coronatine	PCR syr B or syrD	PCR irp1 yersiniabac
P.s. pv. morsprunorum race 1	+, few -	-	-
P.s. pv. morsprunorum race 2	-	-	+
P.s. pv. syringae	-	+, few -	-
P.s. pv. avii	-	-	+

Yersiniabactin gene *irp1* Differentiate pvs. *morsprunorum* race 2 and *avii* from *P. syringae* pv. *syringae*

- The development of a PCR protocol for detecting the gene *irp1* involved in the production of the siderophore yersiniabactin.
- Detection of the yersiniabactin gene *irp1* by PCR using primers PSYE2/PSYE2R helps to differentiate pvs. *morsprunorum* race 2 and *avii* from *P. syringae* pv.*syringae*.
- The strains of pathovar morsprunorum race 2 and avii both give positive results.

Yersiniabactin gene *irp1* Differentiate pvs. *morsprunorum* race 2 and *avii* from *P. syringae* pv. *syringae*

			Year of	Genes encoding toxin production							
Group ^a	Strain	Host	isolation	syrB	cfl	irp1					
			isolation	(syringomycin)	(coronatine)	(yersiniabactin)					
Psm race 1	701A	Sweet cherry	2005	-	+	-					
	702	Plum	1994	-	-	-					
	704	Sweet cherry	1994	-	+	-					
	710	Sweet cherry	1996	-	+	-					
	755	Plum	1999	-	-	-					
	771	Plum	1999	-	-	-					
	782	Sweet cherry	2001	-	-	-					
	787	Plum	2001	-	-	-					
	788	Plum	2001	-	-	-					
	793	Plum	2001	-	-	-					
	LMG 2222*	Prunus avium cv. 'Napoleon'		-	+	-					
Psm race 2	701	Sour cherry	1994	-	-	+					
	719	Sour cherry	1997	-	-	+					
	732	Sour cherry	1997	-	-	+					
	733	Sour cherry	1997	-	-	+					
	745	Sour cherry	1999	-	-	+					
	764	Sour cherry	1999	-	-	+					
	CFBP 3800*	Prunus cerasus		-	-	+					
Atypical ^b	791	Sour cherry	2001	_	-	_					
Pss	702A	Plum	2005	+	-	-					
	753	Apricot	1999	+	-	-					
	757	Plum	1999	+	-	-					
	760	Sour cherry	1999	+	-	-					
	762	Apricot	1999	+	-	-					
	763	Sour cherry	1999	+	-	-					
	2905*	Sour cherry	1978	+	_	-					
	LMG 1247*	Syringa vulgaris		+	_	-					

The Species Concept in Prokaryotes Species definition for bacteria

Different species concepts Biological species concept may or may not be applied to prokaryotes!!!

What is a species? General definition

- Species = Latin term meaning "kind" or "appearance".
- Linnaeus (founder of modern taxonomy) described species in terms of their physical form (morphology).
- Morphology is still the most common method used for describing species.
- Modern taxonomists also consider genetic makeup and functional and behavior features when describing species.

Speciation The formation of new species Speciation and Taxonomy

- Speciation refers to the formation of species.
- Speciation is the evolutionary process by which new biological species arise.
- The evolution of two or more new species from one pre-existing species, will occur if different groups within a species evolve to become different from each other -- so different that they would be considered different species.

Speciation Kinds of species concept and modes of speciation

- Kinds of species concept:
- Biological species concept;
- 2. Morphological species concept;
- Recognition species concept;
- Ecological species concept;
- 5. Evolutionary species concept.

- Types or modes of speciation:
- 1. Allopatric
- 2. Sympatric

Speciation 1. Kinds of species concept

- Biological species concept(a group of individuals that can breed together. However, they cannot breed with other groups).
- 2. Morphological species concept (on the basis of phenotypic features).
- 3. Recognition species concept (unique set of molecular, morphological, or behavioral characteristics).
- 4. Ecological species concept (defines a species on the basis of where they live and what they do).
- 5. Evolutionary species concept (defines a species as a sequence of ancestral and descendent populations that are evolving independently of other such groups).

- Biological species: A population or group of populations whose members have:
- 1. The potential to interbreed with one another in nature, and
- 2. To produce viable, fertile offspring, but cannot
- 3. Produce viable, fertile offspring with members of other species.

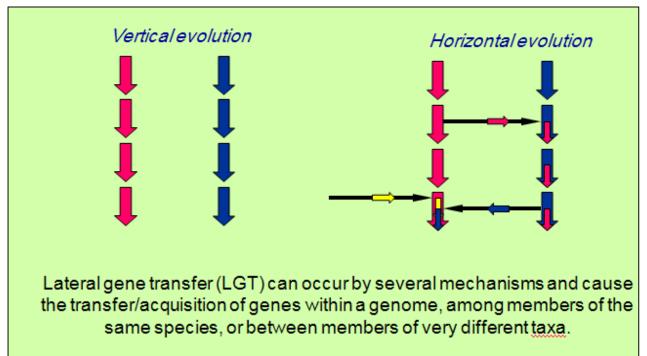
Biological species concept does not apply to prokaryotes!!!

- The biological species concept cannot be applied to:
- Organisms that are completely asexual in their reproduction:
- 1. Some protists and fungi,
- 2. Some commercial plants (bananas), and
- 3. Many bacteria are exclusively asexual.

Biological species concept may be applied to prokaryotes!!!

 Regarding biological species concept, most commonly applied to higher organisms, could be applied to bacteria, implying that there is a gene pool shared by members of species.

Biological species concept may be applied to prokaryotes Gene transfer (gene flow)


- All bacteria share a common gene pool and all belong to the same species.
- Mixing of 'species' gene pools would give the equivalent of the Biological Species Concept.
- 10-15% of *E. coli* genome derived from lateral gene transfer.

Biological species concept may be applied to prokaryotes Gene transfer (gene flow)

- Basically, bacteria do not respect conventional species concepts.
- By this, I am referring to their habit of sharing small segments of their DNA with neighboring bacteria, regardless of "species".
- Because bacterial DNA swapping is different to what we see when parents provide copies of their DNA to their offspring (vertical gene transfer), this process has another name: horizontal gene transfer.

Gene transfer Vertical gene transfer vs Lateral gene transfer

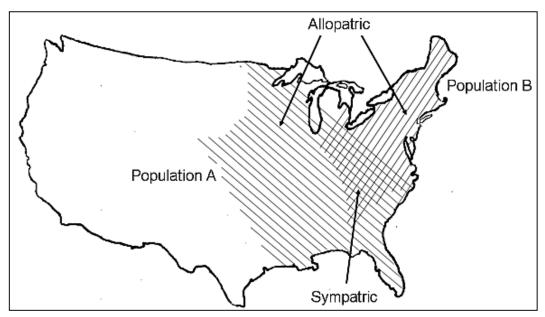
 Lateral (or horizontal) gene transfer denotes any transfer, exchange or acquisition of genetic material that differs from the normal mode of transmission from parents to offspring (vertical transmission).

Speciation 2. Types or modes of speciation

 Two organisms, or two populations, or two varieties, species or taxa, can live in relation to each other in two ways, geographically speaking.

1. Allopatric speciation:

- Speciation occurs with physical separation.
- They can live in different regions (*allo*-meaning "other", plus *patria* gives allopatry).

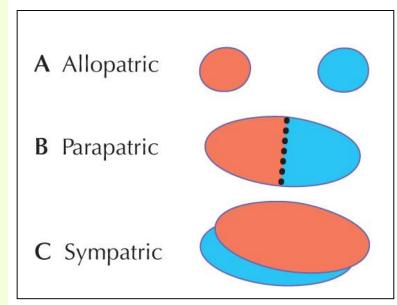

2. Sympatric speciation:

- Speciation occurs without physical separation.
- They can live in the same region (*sym-* meaning "together", plus *patria*, gives *sympatry*).

Speciation

Comparison of allopatric and sympatric speciation

- 1. Allopatric: refers to populations that are geographically isolated (they do not overlap).
- 2. Sympatric: refers to populations whose ranges overlap.


Speciation Types or modes of speciation Allopatric, sympatric, platypatric

1. Allopatric speciation:

 Two populations are separated by some geographically barrier. No
 HGT will occurs. They therefore diverge in complete independence.

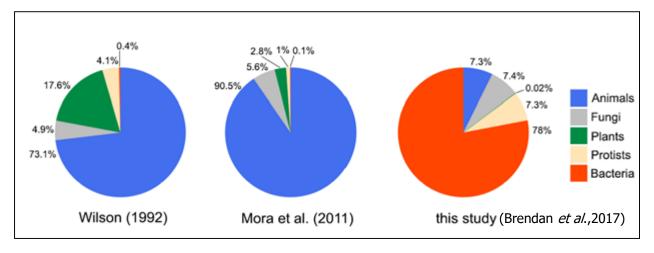
2. Parapatric speciation:

- There is only partial separation of the zones of two diverging populations afforded by geography(dotted line).
- 3. Sympatric speciation:
- There is no spatial separation. They can live in the same region.

Sympatric speciation Bacteria Obligate pathogens or symbionts

- Sympatric speciation is very different from the other forms because new species emerge from populations living in highly overlapping or even identical areas.
- It may be more common in bacteria than in multicellular organisms.
- Because:
- 1. bacteria can transfer genes to each other, as well as
- 2. transfer genes to offspring when they divide.

Sympatric speciation Bacteria Obligate pathogens or symbionts


- Bacteria that evolve in close association with a host, e.g. obligate pathogens or symbionts, and exhibit limited dispersal hence mixing outside the host, are likely to exhibit well-defined genetic clusters as an effect of their coevolution with their host (sympatric speciation).
- This scenario (sympatric speciation) may be generally applicable to bacteria that have a very narrow ecological niche and their dispersal between inhabitable niches is restricted by survival and/or distance factors.

Four modes of speciation Allopatric, sympatric, peripatric and parapatric Biodiversity

 All forms of natural speciation have taken place over the course of evolution; however it still remains a subject of debate as to the relative importance of each mechanism in driving biodiversity.

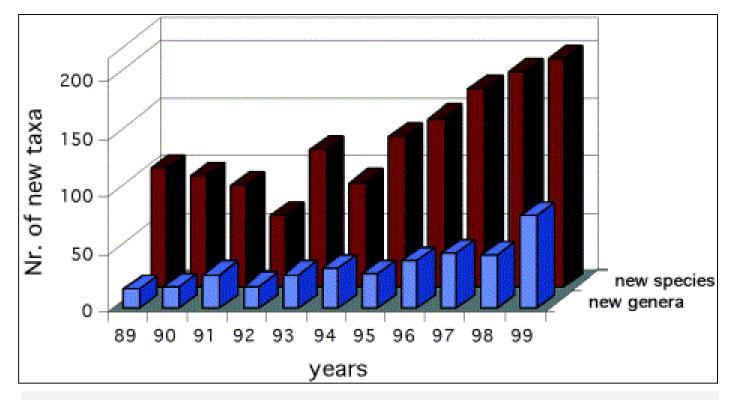
Species discovery Exploring biodiversity

- 1. To date, about 1.5 million species have been formally described in the scientific literature, most of them insects.
- 2. 350-400,000 species of land plant have been described.

Bacteria comprise less than 1% of all described species.

Species discovery Exploring biodiversity Counting in a bacterial world

- An informal survey of 24 microbiologists at a conference in Spain last year tried to reach a consensus.
- 1. Two people guessed that the Earth was home to between 10,000 and 100,000 species of bacteria;
- 2. Another five said between 100,000 and 1,000,000;
- 3. While nine microbiologists put the put the upper limit at ten million species;
- 4. Eight guessed there were even more..


Species discovery Exploring biodiversity Counting in a bacterial world

- A 2011 paper in the journal PLOS Biology put the total number of species at 8.7 million, but that study's methodology calculated the existence of only 10,000 bacterial species, a contradiction of the 2004 review that put the minimum known bacterial species above 35,000.
- It is suspected that many bacteria cannot be cultured i.e. the niche conditions cannot be reproduced. One of the reasons is that to date less than 5000 prokaryotic species have been described.
- The result is that only a relatively small number of bacterial species are described (7029 in year 2005).
- So most bacterial diversity remains to be discovered...... How?

Species discovery Exploring biodiversity Counting in a bacterial world

- Question: Why we should care whether there are 10,000 or a million or even a billion different kinds of bacteria?
- Answer: If we're interested in discovering new drugs from bacteria - and pharmaceutical companies certainly are - it's important to know what's out there.

Descriptions of new taxa through the years 1989 and 1999 The current number is 10,929

During the last years, the number of new isolates as well as the amount of information useful for systematics has increased significantly. New combinations of already existing taxa have not been included.

Species concept Microbial diversity Types of diversity

- Morphological diversity:
- Bacilli, cocci, and spirals are 3 common shapes, but we've also seen filamentous forms, pleiomorphic forms. Although most bacteria are tiny, there are many varieties of size, ranging from submicroscopic up to a few bacteria that can be seen with the naked eye.

Structural diversity:

- There are major differences between gram-positive and gram-negative bacteria, and even more profound structural differences between bacteria and archaea.
- Other differences include presence or absence of walls, external appendages (capsules,..), endospores, etc.

Species concept Microbial diversity Types of diversity

Metabolic diversity:

- Heterotrophs vs autotrophs.
- e.g. bacterial nutrition (how they obtain energy and carbon), and differences between catabolic styles such as fermentation vs respiration (aerobic and anaerobic).

Genetic diversity:

- Small ribosomal subunit sequencing has profoundly altered our perception of the extent of genetic diversity.
- Now that genomes are being sequenced for many microbes, the full extent of this diversity is being understood as never before.
- The great bulk of life's diversity is not in the eukaryotes, but in the bacteria and archaea.

Prokaryote species concept Problems with prokaryote species concept

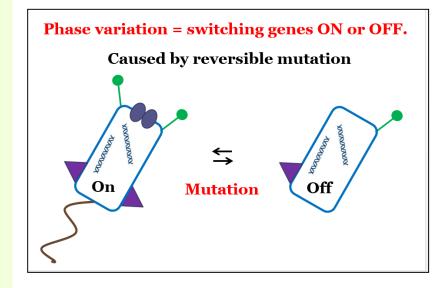
- 1. No useful fossil record.
- 2. No universal concept exist
- 3. Original classification were produced simultaneously by different microbiologists.
- 4. Problems with microbial diversity
- 5. Problems with gene transfer

Species concept 1. Problem with exist of useful fossils

Paleo-bacteriology cannot identify species – no useful fossil record.

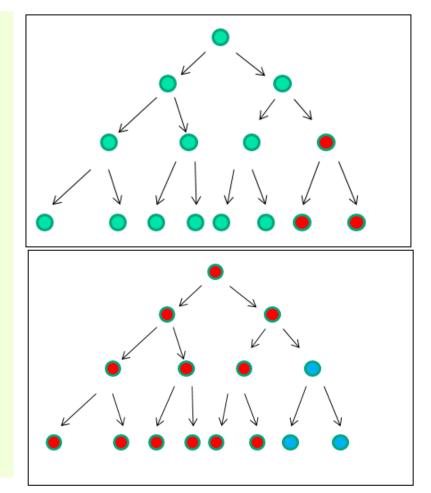
Species concept 2. Problems with microbial diversity

- Microbial genomes can be remarkably plastic, being capable of substantial change within very short periods of time.
- Genetic heterogeneity in individual microorganisms can arise from a number of random, semi-random, or programmed events.
- Tempo(speed) of evolution likely to be affected by:
- 1. Integration of entire genes/pathways, as well as,
- 2. Variation by mutation.

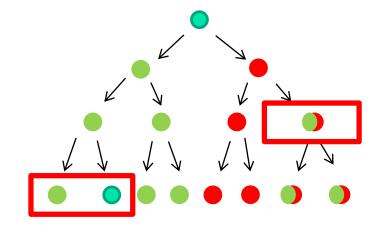

Species concept Problems with microbial diversity

- Modes and mechanisms of genetic variability include:
- 1. Spontaneous point mutations (single base is substituted).
- 2. Random transcription events.
- 3. Phage-related phenomena (e.g. transduction and lysogeny).
- 4. Chromosomal duplications and gene amplification;
- 5. The presence, absence, and copy number of mobile genetic elements such as plasmids and transposons.
- 6. Flagellar or capsular phase variation.
- 7. Even intracellular genetic heterogeneity, such as that arising from transcription of multiple rRNA operons within a single cell.

Phase variation Mutation

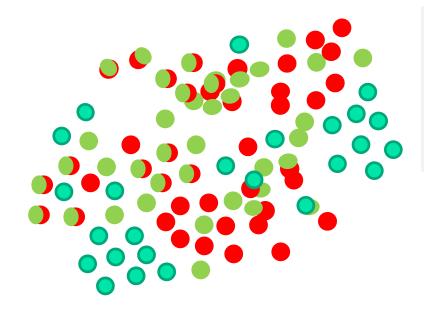

Phase variation:

- Phase variation is the switching on and off of genes in response to mutation.
- These mutations are reversible, meaning genes can be switched on and off interchangeably.



What does phase variation look like?

- Mutation is random.
- Like rolling a dice.
- One cell will divide into two daughter cells.
- With every division, there is a chance they will mutate (mutation rate).
- This mutation will be passed down to the daughter cells.
- It is a reversible process.


What does phase variation look like?

- * Many bacteria have more than one phase variable gene
- * Both genes can mutate at the same time

* Mutation isn't this quick in real bacteria.

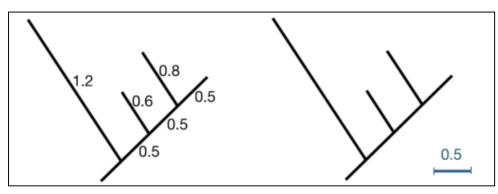
What is the effect of phase variation on populations of cells?

All of the different cells have the same DNA but have different antigens expressed.

Species concept How do we estimate genetic change? Branch length

- Spontaneous point mutations (single base is substituted).
- Estimating the extent of genetic change is not a trivial task.
- A naïve method is to align pairs of sequences, count up the number of differences and divide by the sequence length.

Human ATGTTGACTC Mouse ATGCTGACTC


medee miderenere

Simple sequence alignment.

In above figure, we can see that there is one site that is different between the two sequences, and we could say that based upon this tiny sample there are 1/10 = 0.1 substitutions per site.

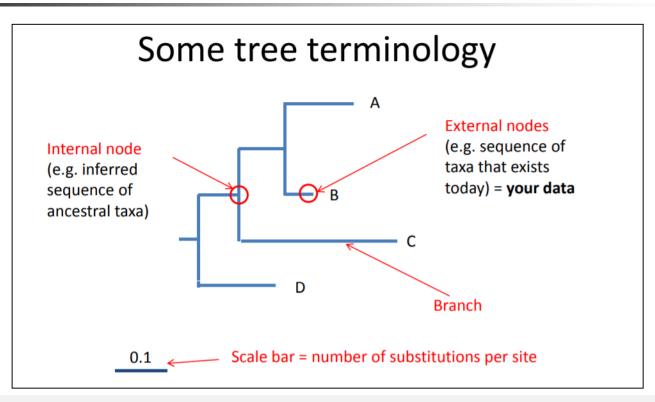
Species concept How do we estimate genetic change? Branch length/scale bar

- Informative branch lengths are typically drawn to scale and indicate the number of substitutions per site.
- Branch lengths are occasionally shown on the phylogeny (left), but it is far more common to see branch lengths represented by a scale bar (right).

A scale bar usually indicates distances (p-distance). Measuring evolutionary distance between two sequences. Scale bar represents base or amino acid substitution per site.

Species concept How do we estimate genetic change? Branch length

Beware of very long branches!


- To get a value of one substitution per site using the simple method above would require the pair of sequences to be completely different to each other at all 10/10 sites.
- It is unlikely you would align such sequences since two random nucleotide sequences are likely to be 25% identical.
- So if you see figures in the literature with branches longer than ~3 substitutions per site then you might want to worry about the confidence we have in those estimates!

Species concept

How do we estimate genetic change? Scale bar represent p-distance

- Pairwise distance (p-distance) and p is the percent difference.
- p-distance(P=n_d/n) = number of different aa/nt (amino acids or nucleotides) between two aligned sequences of length n.
- The "scale bar" is a reference, basically a ruler, allowing someone viewing the tree to measure the lengths of the branches in the tree, and to compare different trees.
- Typically, the scale bar line represents an evolutionary distance of 0.10 or 0.05.
- The scale bar represents p distance.

Species concept How do we estimate genetic change? Scale bar represent p-distance

In this figure scale bar= no. of substitution per site (one site that is different between the two sequences).

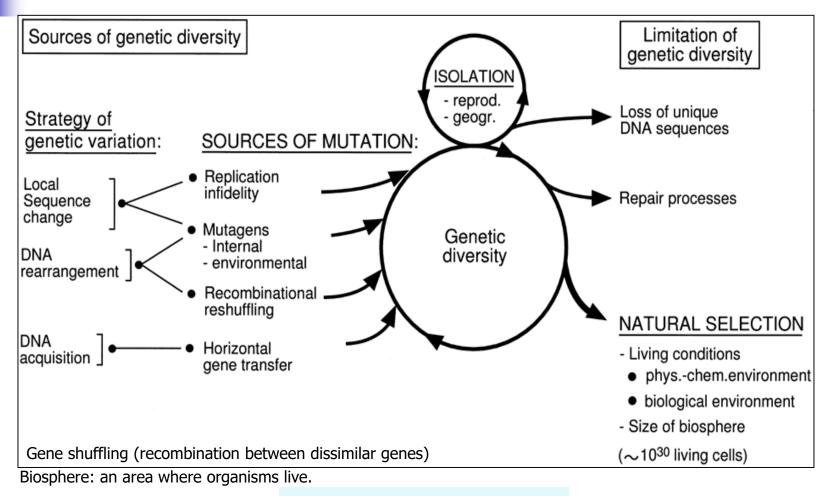
0.1= one nucleotide differences in 100 nucleotides per site.

Tadmor,2010;..

Species concept How do we estimate genetic change? Scale bar represent p-distance

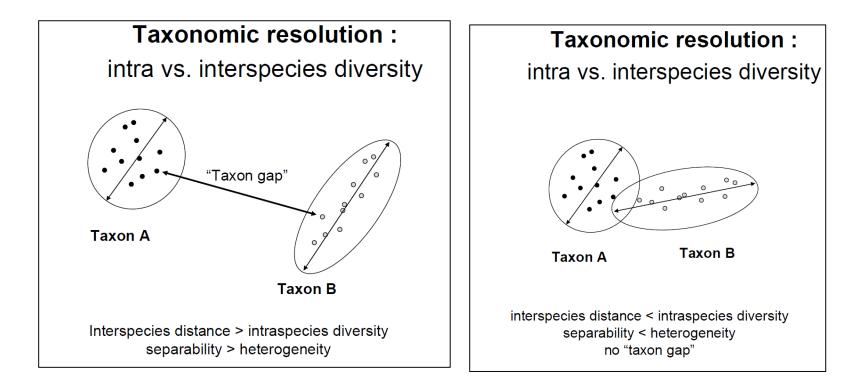
- p-distance (P=n_d/n) is a simple measure of evolutionary distance is a count of the number of sites between any two sequences that are different.
- This is known as the observed distance or p-distance.
- P- distance doesn't account for multiple hits: $A \rightarrow C \rightarrow T$.
- E.g.
- If two mutations occurs at an individual site: an A changing to a C and then to a T.
- p-distance will only account for one mutation (A+ C) and not two mutations (A+ C+T).

Species concept


How do we estimate genetic change? Scale bar represent p-distance

- P- distance doesn't account for back mutation or hits: $A \rightarrow C \rightarrow A$.
- P- distance doesn't account for parallel mutations or hits: $A \rightarrow C$; $A \rightarrow C$.
- Underestimates d.
- Saturates at p=0.75 (not a good estimate of d when p is high).

Calculating di p c distance = 100 -	lista	nce				
		,				
· · · · · · · · · · · · · · · · · · ·	1	2	3	4	5	6
	1	2	3	4	5	6
1. Homo sapiens (human) 2. Papio anubis (olive baboon)	1	2	3	4	5	6
	1 0.0513 0.2587	2	3	4	5	6
2. Papio anubis (olive baboon)		_	3	4	5	6
2. Papio anubis (olive baboon) 3. Gallus gallus (chicken)	0.2587	0.2681	0.3660	0.4336	5	6

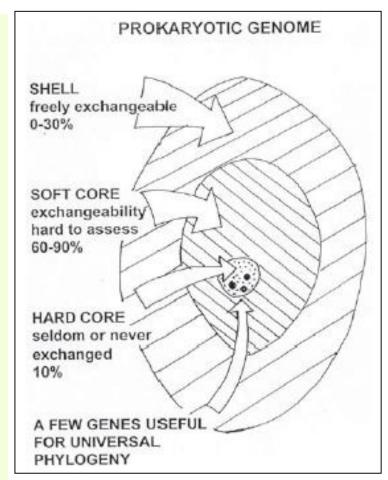

Tadmor,2010

Origin of diversity: genetic drift Synoptic view of elements of the molecular evolution of prokaryotic microorganisms

Arber,2000;Vandamme,2013

Taxonomic resolution Intra vs. interspecies diversity

Tom Coenye

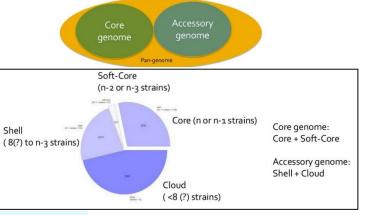

Species concept 3. Problems with gene transfer (gene flow)

- The greater evolutionary potential was seen in bacterial pathogens, due to their:
- 1. Rapid generation time, and
- 2. Ability to exchange genetic material horizontally (LGT/HGT).

- The core or backbone of genes usually coding for components of the informational part of the cellular machinery (i.e., DNA replication, DNA transcription, and RNA translation).
- Sometimes the core is separated into:
- 1. a hard core (never transferred), and
- 2. a soft core (rarely transferred).

- Thus, it seems that genes could pertain to three categories:
- 1. The hard core that is composed of genes that are never transferred (or at least not transferred at the considered scale),
- 2. The soft core with genes rarely transferred (maybe about one atypical node out of 100), and
- 3. The shell genes where all genes susceptible to HGTs.

- Shell: Freely exchangeable 0-30%. A typical prokaryote genome has a shell (up to 30% of its genes) made up of genes that are quickly gained or lost and are patchily distributed among strains of its "species."
- Soft core: Exchangeability hard to assess 60-90%. Most of a genome's genes will be in the "soft" core, comprising genes that are patchily distributed among phyla.
- 3. **Hard core:** It also has a "hard" core of genes shared with (common to) all prokaryotes, seldom or never exchanged 10%. Only a few genes useful for phylogeny.



Species concept Prokaryotic genome Bacterial pan-genome

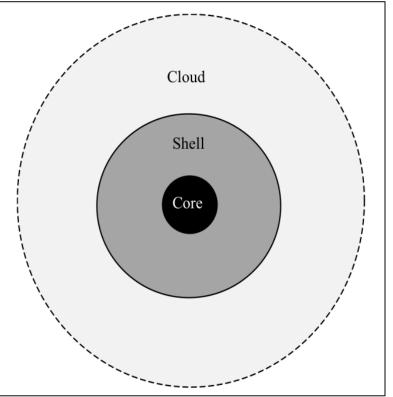
- Pan-genome is defined as the set of all unique gene families found in one or more strains of a prokaryotic species.
- Due to the extensive within-species diversity in the microbial world, the pan-genome is often many times larger than a single genome. Studies of pan-genomes have become popular due to the easy access to wholegenome sequence data for prokaryotes.
- A pan-genome study reveals species diversity and gene families that may be of special interest, e.g. because of their role in bacterial survival or their ability to discriminate strains.

Species concept Prokaryotic genome Bacterial pan-genome

- It has been observed that genes could be divided into classes depending on their degree of conservation within the pan-genome.
- This is the basis for the use of mixture models to predict pan-genome size.
- In the bacterial pan-genome was divided into three major categories:
- 1. Core (hard-core+soft-core)
- 2. Shell, and
- 3. Cloud.

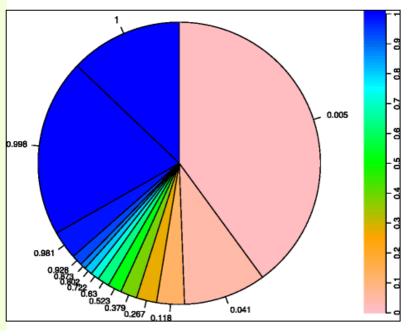
Snipen and Ussery, 2010;..

The bacterial pan-genome can be divided into:


 the core (genes always occurring in any genome inside the pan-genome)

Species concept

Prokaryotic genome


Bacterial pan-genome

- the shell (genes frequently occurring), and
- cloud (rarely occurring genes).

The pie symbolizes the entire pan-genome, and the 14 sectors correspond to various groups of gene clusters, where the color of the sector shows the detection probability, also indicated by the numbers

- The blue sectors are highly conserved (core) genes.
- These are found in (almost) all genomes.
- The greenish sectors are accessory (shell) genes found in (large) subsets of genomes.
- The orange/pink sectors are the rarely occurring (cloud) genes.
- Most of these have not yet been described.
- Only one or a few such genes are found in each genome, but if we keep on sequencing they will make up a large proportion of the pan-genome.

Core genes (always or almost always present), shell genes (often present, but lacking in subsets of genomes) to cloud genes (observed in only a few genomes).

Snipen and Liland, 2015

Species concept Prokaryotic genome Bacterial pan-genome

- 1. Core: The core genes, i.e. the gene families present in all genomes.
- 2. Shell: The shell represents the genes found in the majority of the genomes, and
- 3. Cloud: the corresponding Cloud consists of genes only observed in a minority of the genomes.
- The size of the cloud and shell can be significantly larger than the core genome, reflecting the diversity (or lack thereof) of various types of bacteria in different ecological niches.

Species concept Prokaryotic genome Bacterial pan-genome

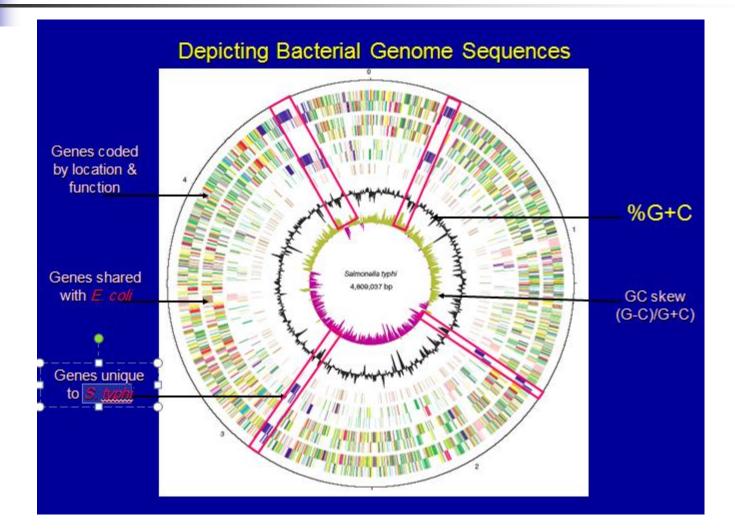
- For example, the shell and cloud would be expected to be larger for *Actinobacteria* and other organisms that produce secondary metabolites.
- On the other hand, pathogenic, parasitic and commensal species that are not routinely found in the environment could have smaller clouds.

Prokaryotic genome Unique bacterial genes

- The functions of most genes, including those on extra-chromosomal elements, aren't known.
- It is estimated that each bacterium has about 40% of its genome devoted to unique genes.

Species definition in bacteria Based on core genome

- The core genes present in the majority of the members of that species and auxiliary genes each present in some of the members.
- Therefore, the species definition in bacteria should be based on analysis of sequence variation in housekeeping genes.
- Because the core genome is less prone to horizontal gene transfer.


Prokaryotic genome Flexible genome

- In contrast to the core genome, the flexible genome or accessory genome largely evolves through horizontal genetic exchange.
- Flexible genome consists of genes that vary among strains within a species.

Prokaryotic genome The core genome vs. flexible genome

- The core genome:
- Conserved among the members of a species.
- The flexible genome:
- A flexible gene pool conferring strain-, pathotype- or ecotype-specific characteristics which allow adaptation to special conditions such as colonization of specific niches or pathogenicity.

Depicting bacterial genome sequences Shared and unique genes

Species concept Evolution of bacterial plant pathogens Horizontal gene transfer (HGT)

- Emergence of new plant pathogens or increase in virulence of the existing pathogens has always been a matter of great concern to plant pathologists.
- In contrast to eukaryotes, bacteria have acquired a significant proportion of their genetic diversity through the acquisition of DNA sequences from distantly related organisms.
- With recent estimates suggesting that on average 81% of prokaryotic genes have been involved in HGT at some point.

Species concept Horizontal gene transfer (HGT) Prokaryotes vs. eukaryotes

- Although observed rates of acquisition of horizontally transferred genes in eukaryotes are generally lower than in prokaryotes, it appears that, far from being a rare occurrence, HGT has contributed to the evolution of many, perhaps all, animals and that the process is ongoing in most lineages.
- Between tens and hundreds of foreign genes are expressed in all the animals we surveyed, including humans.
- The majority of these genes are concerned with metabolism, suggesting that HGT contributes to biochemical diversification during animal evolution.

Species concept Evolution of bacterial plant pathogens Horizontal gene transfer (HGT)

 HGT is very important in the sense that it may cause almost instant emergence of new pathogens, in comparisons to the hundreds or even thousands of years needed for emergence of new pathogens by other mechanisms.

Species concept Evolution of bacterial plant pathogens Horizontal gene transfer (HGT)

- HGT is an important driving force for:
- 1. the evolution of bacterial genome;
- 2. rapid adaptation to changing environments;
- 3. pathoadaptive mutations, which increase virulence by means of minor genetic alterations such as point mutation, and gene rearrangement or deletion, also contribute to the evolution of virulence.

Species concept Evolution of bacterial plant pathogens Example: *Pantoea agglomerans*

- This bacterium is an epiphytic bacterium associated with many plants, was transformed into a host-specific gall-forming pathogen on gypsophila and beet.
- Barash and Manulis-Sasson (2009), in their recent review article, have given an excellent account of transformation of *Pa. agglomerans* into an hrpdependent and host-specific pathogen.
- The transformation was achieved by the evolution of a pathogenicity plasmid that harbours most, if not all of the genes, required for gall formation and host specificity.

Species concept Evolution of bacterial plant pathogens Example: *Streptomyces* spp.

- The emergence of new plant pathogenic species of *Streptomyces* suggests that the pathogenicity island of *Streptomyces* spp. is moblizable, at least in some strains.
- The appearance of *St. turgidiscabies* in Japan is the latest example of a newly emerged species (Loria *et al.*,2006).

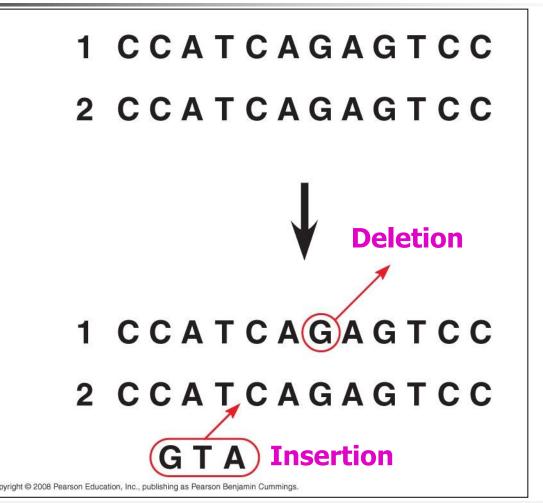
Pathogenicity islands (PAIs) and antimicrobial resistance islands (REIs) are key to the evolution of pathogens.

- 1. PAIs promote disease development, and
- 2. REIs give a fitness advantage to the host over multiple antimicrobial agents.

Thind,2013; PAIDB v2.0

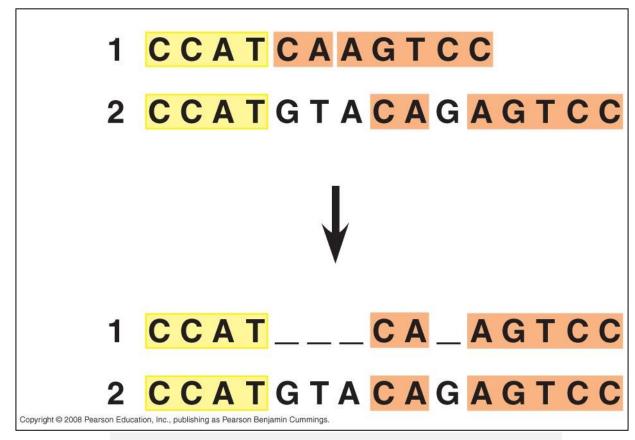
Prokaryotic genome The core genome vs. flexible genome

Core genome	Flexible genome
Essential for cell viability	Non-essential
Genes are stable	Variable
No selection pressure for horizontal acquisition	> Selection pressure
Can't undergo large indels	Large indels possible
Strong phylogenetic signal	Can be weak


Indel: An insertion or deletion occurring in a protein or nucleic acid sequence.

Neil Parkinson

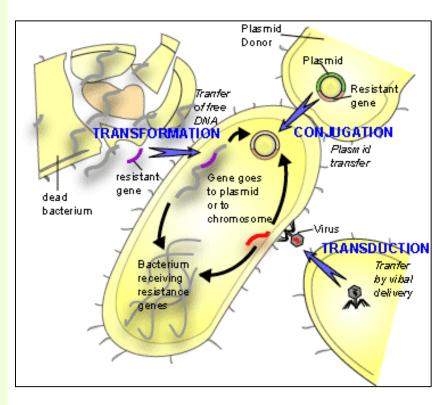
Methods for generation of mutant populations Indels


- The most reliable method to ascertain gene function is:
- 1. to disrupt the gene, and
- 2. determine the phenotype change in the resulting mutant individual.
- Two most popular methods to generate mutants:
- 1. Insertional mutagenesis;
- 2. Deletion mutagenesis.

Prokaryotic genome DNA sequence data Most important type of data

Indel: An insertion or deletion occurring in a protein or nucleic acid sequence.

Prokaryotic genome DNA sequence data Alignment

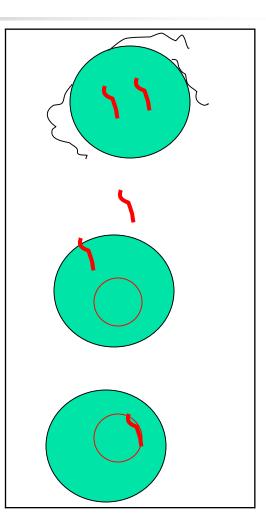

Each nucleotide position = Character Character states = specific nucleotide

Prokaryotic genome Gene flow: gene loss and acquisition Genome evolution

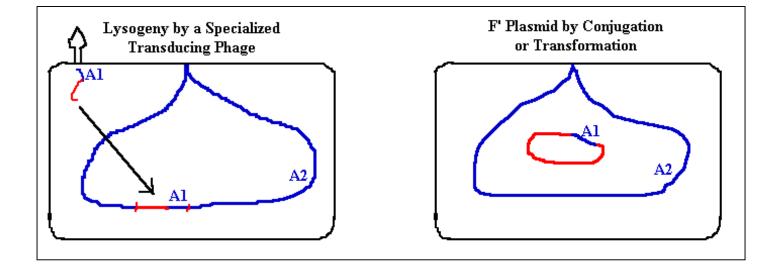
- The process by which the content and organization of genetic information of a species changes over time is known as genome evolution.
- Mechanisms of horizontal gene flux include mobile genetic elements such as:
- Conjugative plasmids,
- Bacteriophages,
- Transposons,
- Insertion elements, and
- Genomic islands(GIs),
- Recombination of foreign DNA into host DNA.

Gene flow Horizontal gene transfer Horizontal transfer, lateral gene transfer

- Lateral or horizontal gene transfer (HGT) is a process whereby genetic material contained in small packets of DNA can be transferred between individual bacteria.
- There are three possible mechanisms of HGT.
- These are:
- 1. Transduction,
- 2. Transformation,
- 3. Conjugation.



Gene flow Horizontal gene transfer Horizontal transfer, lateral gene transfer


- Various mechanisms of gene transfer:
- 1. Transformation
- 2. Conjugation
- 3. Transduction
- Donor remains unchanged but recipient genetically modified.
- Therefore, Donor/recipient can be taxonomically completely unrelated.

Transformation

- Free DNA may become available from dying or disintegrating bacteria.
- This can enter a living bacterial cell and join into its chromosome.
- The process by which free DNA becomes a part of the chromosome is called recombination.

Comparison of Transformation & Transduction

Two processes to create a partial diploid in bacteria are **specialized transduction** and **F' conjugation**.

Conjugation

- Conjugation is considered a major pathway for horizontal (or lateral) gene transfer among bacteria.
- Conjugation requires cell-to-cell contact and operates by DNA replication resulting in unidirectional transfer of genetic material from a donor to a recipient cell.
- It is mediated mainly by conjugative plasmids, although conjugative transposons are also capable of triggering the process of conjugation.

Conjugation Conjugative plasmids

- Plasmids that can be transferred via conjugation is called conjugative plasmids.
- The transfer of chromosomal genes of bacteria may or may not occur.
- Conjugative plasmids can mediate gene transfer between bacterial taxa in diverse environments such as soil and rhizosphere.
- Since bacteria share the same habitat with several other bacterial species, conjugative plasmid can infect different coexist bacterial species.
- Many carrying conjugative plasmids can transfer virulence and antibiotic-resistance genes between pathogenic and nonpathogenic bacteria.

Conjugative plasmids Mediators of DNA transfer

 However, the ability conjugative plasmids to pass between different bacterial strains or species has been considered to be of lower efficiency than their ability to pass between similar bacteria, due to diverse barriers such as restriction systems.

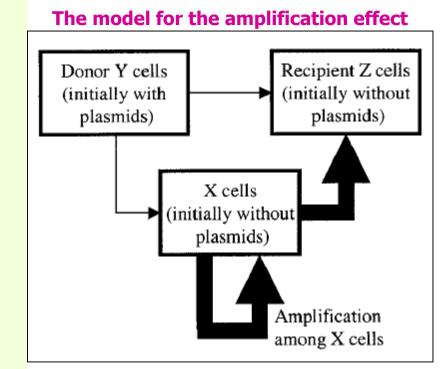
Ti and Sym plasmids Agrobacterium and Rhizobium

- Agrobacterium is closely related to Rhizobium.
- Most of the genes involved in crown gall disease are not borne on the chromosome of *A. tumefaciens* but on a large plasmid, termed the *T_i* (tumour-inducing) plasmid.
- In the same way, most of the genes that enable *Rhizobium* strains to produce nitrogen-fixing nodules are contained on a large plasmid termed the *Sym* (symbiotic) plasmid.
- Thus, the characteristic biology of these two bacteria is a function mainly of their plasmids, not of the bacterial chromosome.

Ti and Sym plasmids Agrobacterium and Rhizobium

- The central role of plasmids in these bacteria can be shown easily by "curing" of strains.
- If the bacterium is grown near its maximum temperature (about 30°C in the case of *Agrobacterium* or *Rhizobium*) then the plasmid is lost and pathogenicity (of *Agrobacterium*) or nodule-forming ability (of *Rhizobium*) also is lost.
- However, loss of the plasmid does not affect bacterial growth in culture.
- The plasmid-free strains are entirely functional bacteria.

Ti and Sym plasmids Agrobacterium and Rhizobium


- In laboratory conditions it is also possible to cure *Agrobacterium* or *Rhizobium* and then introduce the plasmid of the other organism.
- Introduction of the T_i plasmid into Rhizobium causes this to form galls; introduction of the Sym plasmid into Agrobacterium causes it to form nodule-like structures, although they are not fully functional.

Challenging questions about the nature of bacteria

- Studies such as these raise many interesting and challenging questions about the nature of bacteria.
- For example
- 1. What does the name of a bacterial species or genus really mean, if the organism can change so drastically by loss or gain of a non-essential plasmid?
- 2. How much gene exchange occurs by means of plasmids and other mobile genetic elements within natural populations?

Conjugative plasmids Mediators of DNA transfer

- Consider three bacterial populations, X, Y, and Z, living in the same habitat.
- Suppose that Y cells bear a conjugative plasmid.
- The arrows represent the conjugation events:
- Larger arrows represent higher efficiency of the plasmid transfer.
- 1. The plasmid from Y is going to infect both X and Z plasmid-free cells.
- 2. If the conjugation rate among X cells is high, the plasmid number among them will amplify.
- 3. Following this, plasmids from X cells will be massively transferred to plasmid-free Z cells.

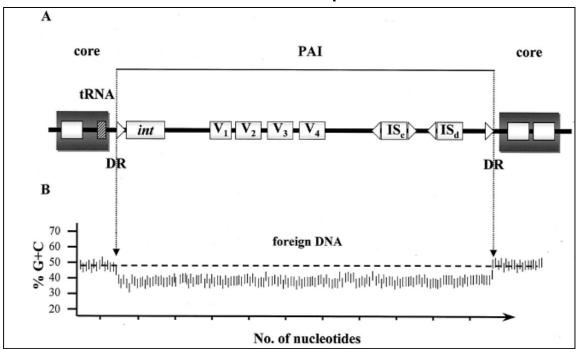
Dionisio *et al.*,2002

Prokaryotic genome Horizontal gene transfer Pathogenicity islands

- The acquisition of genes by lateral transfer is a major factor in the adaptation of clones and in bacterial evolution over all time-frames from generation of clonal diversity.
- Many pathogenic properties are encoded on plasmids, phages or pathogenicity islands, and the transfer of such properties is widely thought to be associated with the origin of pathogenic clones.

For more details please see the Bacterial Pathogenesis-Part II.

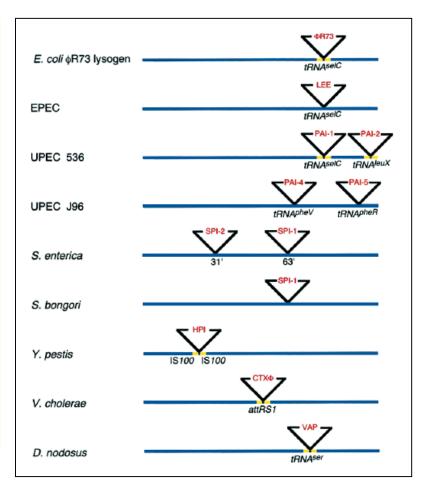
Prokaryotic genome Horizontal gene transfer Pathogenicity islands


- Pathogenicity islands (PAIs) is a subgroup of genomic islands.
- 1. **Genomic islands** are present in the majority of genomes of pathogenic as well as nonpathogenic bacteria and may encode many different functions, which depend largely on the environmental context in which the bacterium grows.
- 2. **Pathogenicity islands** comprise large genomic regions [10-200 kilobases (kb) in size] that are present on the genomes of pathogenic strains but absent from the genomes of nonpathogenic members of the same or related species.
- PAIs carry clusters of virulence genes whose products contribute to the pathogenicity of the bacterium.

Prokaryotic genomes Horizontal gene transfer Pathogenicity islands

- PAIs are often associated with tRNA loci, which may represent target sites for the chromosomal integration of these elements.
- Pathogenicity islands have particular genetic elements such as insertion sequences or tRNA genes, which are sites for recombination into the DNA.
- Cryptic mobility genes may also be present, indicating the provenance as transduction.
- These particular genetic elements were previously able to spread among bacterial populations by horizontal gene transfer, a process known to contribute to microbial evolution.

General structure of PAI


 The PAI boundaries are frequently determined by DRs (direct repeats with perfect sequence repetition (triangle), which are used for insertion and deletion processes.

Relatively low GC contents (below 40%) are assembled in a "pathogenicity island" Schmidt and Hensel,2004

Pathogenicity islands Location of selected pathogenicity islands and phages of Gram-Negative Bacteria

- Chromosomes (blue lines) and pathogenicity islands (black triangles) are not depictured.
- The presence of repeated sequences at the site of insertion, which is shown below the island, is indicated by short yellow lines.

Groisman and Ochman, 1996

Pathogenicity islands Speciation of pathogens

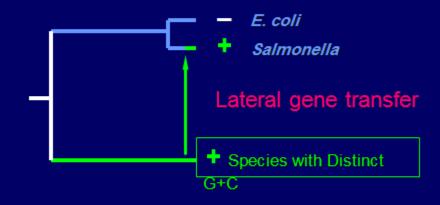
- PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors.
- All knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode will be helpful:
- 1. In gaining a better understanding of bacterial evolution;
- 2. Interactions of pathogens with eukaryotic host cells;
- 3. Providing delivery systems for vaccination,
- 4. Tools for cell biology and for the development of new strategies for therapy of bacterial infections.

Bacterial genomes Genomic islands Pathogenicity islands

- Pathogenicity islands were first described in human pathogens of the species *Escherichia coil*, but have recently been found in the genomes of various pathogens of humans, animals, and plants.
- These regions generally have a different G+C content than their host genome (below 40%), suggesting acquisition via horizontal gene transfer (HGT).
- It is possible to recognize genes that arose by lateral gene transfer by simply examining genome sequences.

Bacterial genomes Genomic islands Pathogenicity islands

- PAIs comprise large DNA regions (up to 200 kb of DNA) and often carry more than one virulence gene, the G+C contents of which often differ from those of the remaining bacterial genome.
- The base composition is expressed as percentage of guanine and cytosine (G+C) bases, and the average G+C content of bacterial DNA can range from 25 to 75%.
- Most pathogenic bacterial species have G+C contents between 40 and 60%.


General structure of PAI Properties of PAIs

PATHOGENICITY ISLANDS

- . Segments of the chromosome harboring large clusters
 - of virulence genes
- . Present in pathogenic strains but absent or sporadically
 - distributed in related non-pathogenic species
- . Typically have a G+C content different from that of the
 - rest of the chromosome
- . Often associated with tRNA genes and/or mobile genetic
 - elements at their boundaries

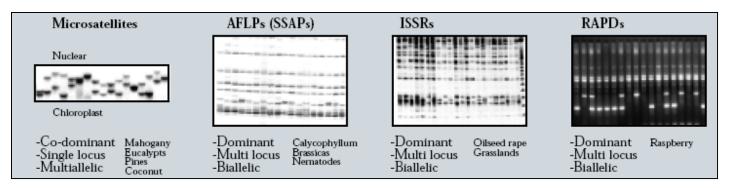
Pathogenicity islands Horizontal gene transfer

Why do pathogenicity islands have atypical G+C contents?

Lateral gene transfer is the source of "atypical" &"speciesspecific" genes

Pathogenicity islands Horizontal gene transfer

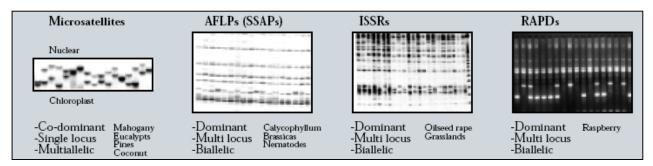
The genes for host cell invasion are the same, but were acquired independently by lateral gene transfer, in *Salmonella* and *Shigella*



The overall base composition of E. coli, Shigella & Salmonella is 52% G+C

Gene flow

Some PCR-based genetic technologies to assess gene flow and the spatial organization of genetic variation in plants/bacteria

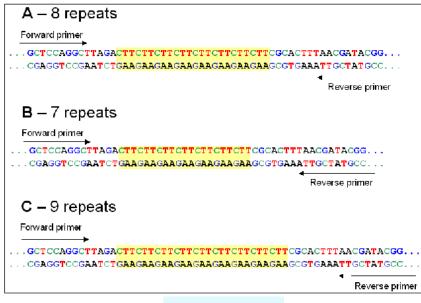

- Some genetic technologies to assess gene flow and the spatial organization of genetic variation in plants.
- To use these techniques, a reasonable amount of tissue (mg) must be available.
- Therefore to generate this amount, the bacteria must be able to be grown in laboratory conditions.

Gene flow

High resolution molecular fingerprinting techniques Microsatellites (SSR) and ISSR

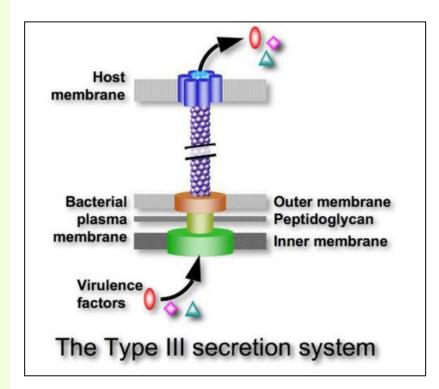
- Microsatellites, also known as Simple Sequence Repeats (SSRs): A repeating sequence in DNA. Repeating sequences of 1-6 base pairs of DNA.
- Microsatellites are typically neutral and co-dominant. They are used as molecular markers in genetics.
- These markers often present high levels of inter- and intra-specific polymorphism, particularly when the number of repetitions is 10 or greater.
- ISSR (inter-simple sequence repeat): A general term for a genome region between microsatellite loci. Sequences amplified by ISSR-PCR can also be used for DNA fingerprinting.

Gene flow


High resolution molecular fingerprinting techniques Microsatellites

- The sequence surrounding the repeat region is usually conserved, allowing PCR primers to be designed so that the repeat region and a short flanking sequence can be amplified.
- Individuals may differ in the number of repeats present, meaning that the length of the PCR product varies.
- Products can be scored using various forms of high resolution electrophoresis (polyacrylamide or semi automated sequencers).
- Used as molecular markers, they are co-dominant, often highly polymorphic and relatively easy to score.
- The high polymorphism of microsatellites is attributed to relatively high rates of error during DNA replication (slippage) and during recombination (unequal crossover).

Gene flow


High resolution molecular fingerprinting techniques Microsatellites

- Synonyms :
- SSR (Simple Sequence Repeat); or
- STR (Short Tandem Repeat).
- Microsatellites are sections of DNA composed of repeats of short motifs (e.g. CA, GTG, TGCT etc) arranged in tandem.

Type III secretion system Structure

- Injection apparatus, together with effector proteins, for parasitising euckaryotic cells.
- Required for by proteobacteria to produce infection of plants and animals.
- Required for colonization and plant defence activation in growth promoting strains.

Type III secretion system Highly integrated component proteins

- Type III secretion (TTS) systems have been discovered in many Gram-negative bacteria that are pathogenic for animals, plants and even insects.
- These secretion pathways contain highly integrated component proteins, conserved across many bacterial species, and which consist of about 20 or more genes.
- The type III pathway has been found to secrete a number of different proteins in these bacteria, in particular virulence and pathogenicity factors.

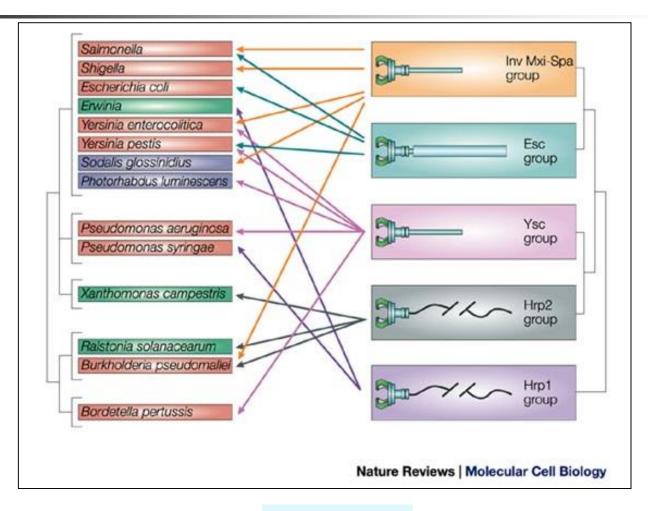
Type III secretion system Distribution of type III secretion systems among saprophytic/nonpathogenic/symbiotic bacteria

- Type III protein secretion systems (TTSSs) have recently been reported in non-pathogenic bacteria.
- In the symbiotic bacteria such as:
- Rhizobium sp. parasponia
- Bradyrhizobium japonicum.
- In five saprophytic species such as *P. fluorescens* and *P. putida*.

Type III secretion system Distribution of type III secretion systems among pathogenic bacteria

- TTSS is employed for suppression of plant defence systems.
- Comparing the genes and their organization, TTS systems can be grouped in five 'families' (see figure).
- Interestingly, some bacteria harbour not only one system, but two from different families (*Salmonella enterica*, *Yersinia enterocolitica* from biogroup 1B, *Y. pestis* and *Burkholderia*).

Type III secretion system T3SE evolution


- The genome sequences have revealed a considerable variability in T3SE numbers per strain and a large number of T3SE families.
- A comparison of *P. syringae* pv. *tomato* strainT1 against strain DC3000 found that the genomes were highly similar except for theT3SE repertoires, which had diverged significantly.
- DC3000 is a pathogen of both tomato and Arabidopsis thaliana whereas T1 is pathogenic on tomato but not on A. thaliana.
- So the differences in their respective T3SE repertoires may help to explain the different host range of these strains.

Type III secretion system Phylogenetic analysis

- A recent phylogenetic analysis showed that the evolutionary tree of TTS systems differs completely from the phylogeny of their bacterial host, and hence that they have been distributed in bacterial populations by horizontal transfer.
- They are generally found:
- 1. on plasmids (*Yersinia, Shigella*), or
- 2. on discrete 'pathogenicity islands' in the bacterial chromosome.

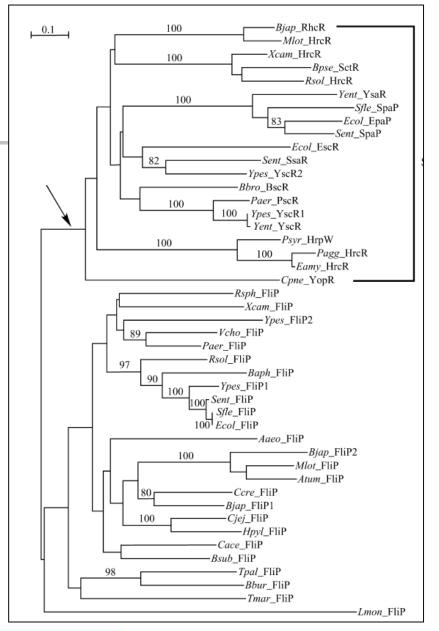
A phylogenetic tree of a TTS system (right) compared with the bacterial phylogenetic tree based on 16S RNA

Plant pathogens are shown in green

Cornelis,2002

Type III secretion system TTSS protein sequences

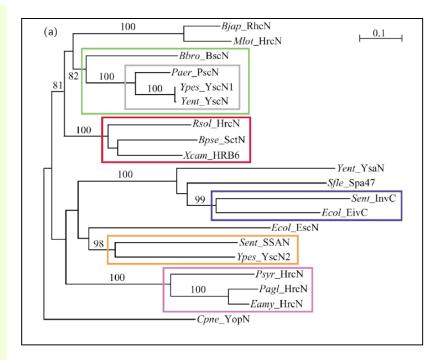
- It has often been suggested that TTSS genes evolved from genes encoding flagellar proteins.
- Sequence similarity confirm this high degree similarity between TTSS proteins and flagellar proteins.
- Few intriguing(interesting) questions present themselves:
- Did TTSS originate from flagella?
- Did TTSS genes evolve first in plant-pathogens as an adaptation of the flagellar basal body.

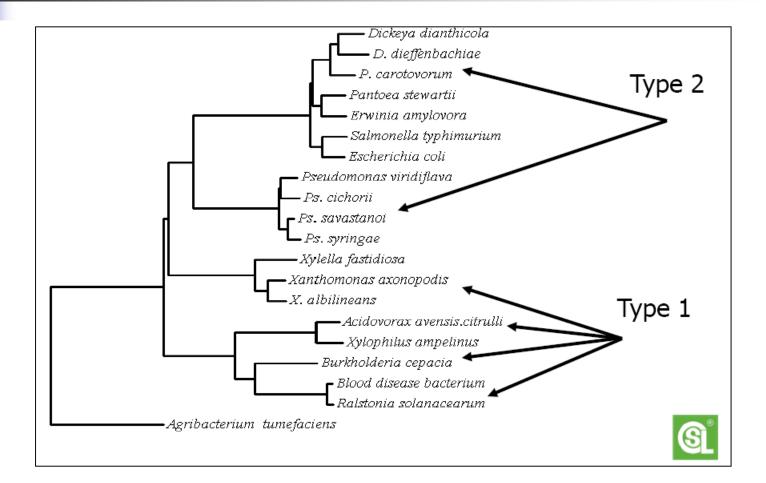

Phylogenetic relationships of type III secretion proteins with flagellar proteins

- Protein sequences used in this study were variable including SctN/FliI, SctV/FlhA, SctR/Flip and SctS/FliQ homologs.
- Our TTSS phylogenetic trees reveal no clear division between bacteria of mammals and plants, thus, lending no support for the assumption that the TTSS emerged first in plant bacteria.

Phylogenetic relationships of type III secretion proteins with flagellar proteins

- In *Pseudomonas*, two different species have TTSS clusters that are highly dissimilar, each adapted to its own host.
- The mammalian pathogen *P. aeuroginosa* and the plant pathogen *P. syringae* have SctN orthologs that are phylogenetically related to those of Enterobateriaceae.


- Unrooted neighborjoining phylogenetic trees of proteins (SctR/FliP) from the flagellar export and type III secretion systems.
- The arrows indicates that it is possible to position the roots.


Gophna et al.,2003

Neighbor-joining trees for SctN protein sequences

- Unrooted neighborjoining phylogenetic trees of proteins (SctR/FliP) from the flagellar export and type III secretion systems.
- The arrows indicates that it is possible to position the roots.

Type three secretion system TTSS phylogenetic trees Plant pathogenic proteobacteria

Neil Parkinson

Polyphasic Taxonomy Species definition

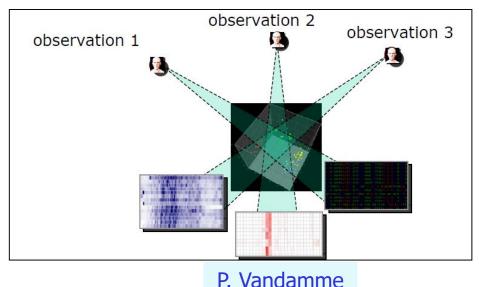
Current bacterial species definition based on:

- 1. Phenotype,
- 2. Ribotype, and
- 3. Genotype information.

The Species Concept in Prokaryotes What is a bacterial species?

- The taxonomic hierarchy stands on the basic category "species."
- This unit is considered to be the unique real entity of the whole classification schema, whereas all other higher categories are considered to be abstract.
- The search for a universal species concept has led to heated debates, and establishing universal categories for all living organisms, including prokaryotes, has created general dissatisfaction.

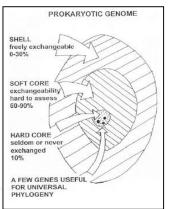
Definition of species Definition of "species" in microbiology


- Classic definition: A collection of microbial strains that share many properties and differ significantly from other groups of strains.
- Species are:
- 1. Identified by comparison with known "type strains";
- 2. Well-characterized pure cultures;
- 3. References for the identification of unknowns.
- There are several collections of type strains, including the American Type Culture Collection (ATCC).

Definition of species Definition of "species" in microbiology

- Strain:
- A population of microbes descended from a single individual or pure culture.
- Different strains represent genetic variability within a species:
 - Biovars: Strains that differ in biochemical or physiological differences.
 - Morphovars: Strains that vary in morphology.
 - Serovars: Stains that vary in their antigenic properties.

Species Concept in Prokaryotes Polyphasic species definition


- Species are defined by pragmatic, arbitrary, and sometimes artificial methods based on 16S rRNA gene sequences, DNA-DNA hybridisation, morphology, physiology and chemotaxonomy (...)"
- The system is functional in many ways

Species Concept in Prokaryotes Polyphasic species definition

- The bacterial species appears to be an assemblage of isolates originating from a common ancestor population in which genetic drift resulted in clones with different degrees of recombination and characterized by:
- 1. a certain degree of phenotypic consistency;
- 2. a significant degree of DNA-DNA hybridization;
- 3. over 97% of 16S rRNA gene sequence similarity.

Polyphasic Taxonomy Species concept

- Whole genome sequences can become part of polyphasic taxonomy and the standard description of bacterial species.
- Genomes seem to be composed of:
- 1. a core set of genes that is conserved among strains of the same species, and
- 2. accessory genes that are strain specific.
- Content and size of core vary with species.

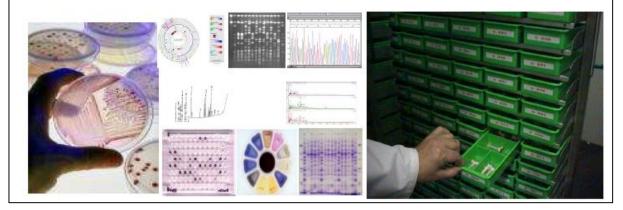
Species Concept in Prokaryotes Polyphasic approach The only solution for species definition

- Today, prokaryote taxonomists agree that a reliable classification and acceptable species concept can only be achieved by the exploration of the internal diversity of taxa by a wide range of techniques in what is generally known as the `polyphasic approach' including:
- 1. Phenotype,
- 2. Ribotype, and
- 3. Genotype informations.

Species Concept in Prokaryotes Methods and parameters used in prokaryotic species designation

- 1. Phenotypic Based
- 2. Classical
- 3. Chemotaxonomy
- 4. Microbial Identification Systems
- 5. DNA Based
- 6. rRNA Analysis
- 7. DNA Based typing methods

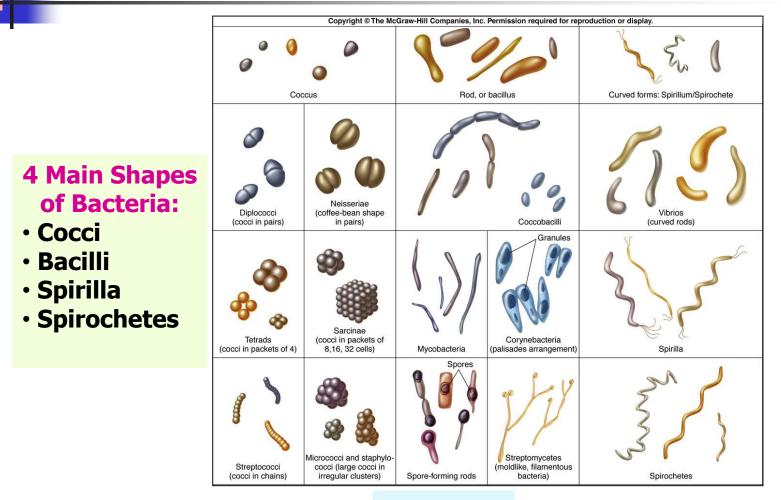
Species Concept in Prokaryotes Taxonomy and species definitions


- The observation of diversity: phenotypic and genotypic coherence allows to define bacterial species.
- Taxonomy and species definitions vary with technology: old and new practices.
- 1. Phenotypic and numerical taxonomy
- 2. **DNA**
- 3. Phylogeny
- 4. Polyphasic taxonomy
- 5. Whole genome sequences.

Vandamme,2013

Species Concept in Prokaryotes Taxonomy and species definitions

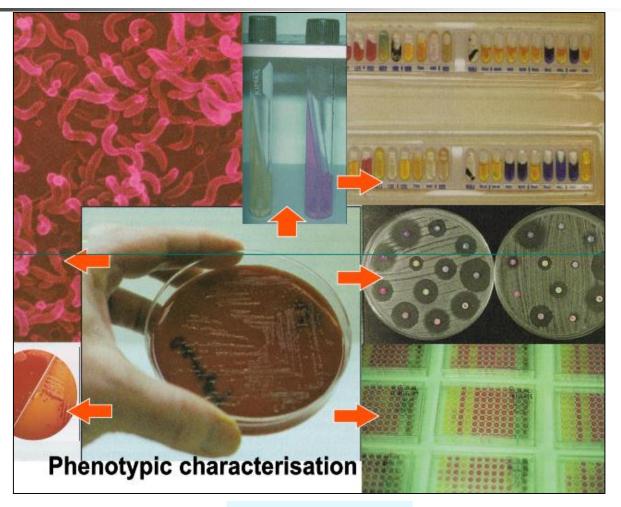
http://www.lm.ugent.be/



Vandamme,2013

Species Concept in Prokaryotes 1. Phenetic methods

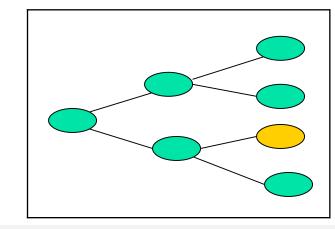
- 1. Morphology, physiology and growth conditions.
- 2. Tests directly or indirectly different phenotypic properties.
- 3. Difficult to perform cladistic analysis based on phenotypic data (phylogenetic reconstructions).
- 4. Useful for establishing relationships within species.
- 5. Lack resolution above this taxon level.


Species Concept in Prokaryotes Phenetic methods

Powers,2011

The bacterial species concept, definition & taxonomy

Conventional bacterial taxonomy placed heavy emphasis on analyses of phenotypic properties of the organism


Vandamme,2013

Species Concept in Prokaryotes Limits of phenetic methods

- Unlike eukaryotes, bacteria reproduce by binary fission and bacterial populations consist of clones (population of cells derived from a single cell).
- Mutation generates variation and diversity among these clones.
- However, genetic recombination by lateral transfer of genes also occurs, and the frequency varies greatly.

Species Concept in Prokaryotes Limits of phenetic methods

- Based on asexual division (clones) rather than sexual reproduction within the group.
- Mutations during division introduce new phenetic characters.
- Impossible to deduce bacterial lineages by examination of present-day phenetic characters – lateral gene flow would confuse the phylogeny.

Prokaryotic species: A population of cells with similar characteristics.

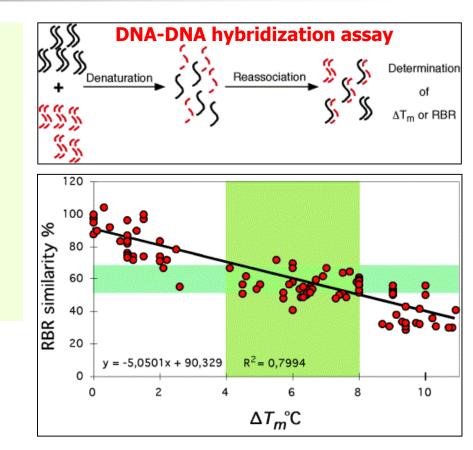
Clone: Population of cells derived from a single cell; **Strain:** Genetically different cells within a clone; **Culture:** grown in the lab.

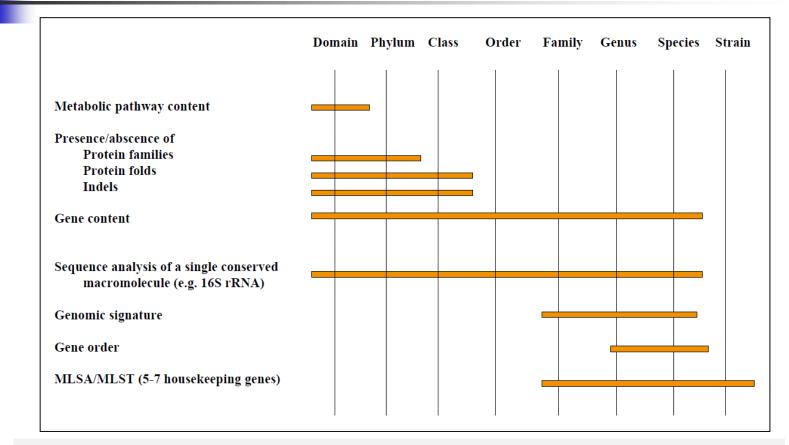
Species Concept in Prokaryotes Limits of phenetic methods

- The clone is not a defined taxonomic level, making it quite possible to name clones within clones, reflecting the reality of bacterial populations.
- Longevity of clones:
- 1. Clones are identified by very high levels of similarity of sequence in housekeeping genes.
- 2. How long a clone will retain this characteristic depends on the level of clonality of the species.
- 3. There are a wide range in levels of clonality among bacterial species.

Clonality: A measure of the ability of a group of the same cells to form clones.

The Species Concept in Prokaryotes Minimum standards for species definition 2.1. Mole % G+C and DNA/DNA Homology


- Minimum standards for species definition:
- 1. Mole % G+C;
- 2. DNA homology.
- But the most impotant molecular clock is 16S rRNA gene.
- In recent years, species discrimination was based on:
- 1. 70% DNA-DNA Homology, and
- 2. 2% 16S nucleotide (base) sequence difference.


At present all they believe that definitions of bacterial species and subspecies ranks can be obtained in the light of detailed information from whole genome typing approaches.

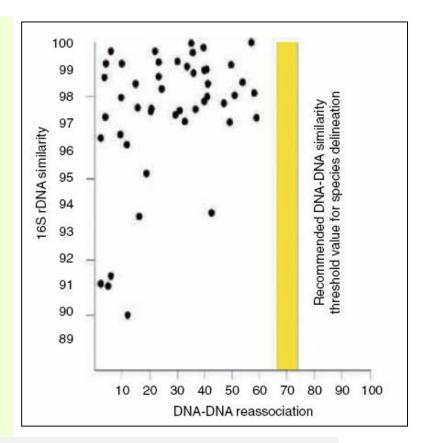
Species Concept in Prokaryotes DNA-DNA hybridization Old gold standard for bacterial species demarcation

- Correlation between RBR (relative binding ratio) and Tm values.
- Commonly accepted values for species boundaries are indicated in green.

Species Concept in Prokaryotes Gene-sequence-based criteria for species definition Sequence analysis of conserved macromolecules

Gene order: The sequential location of genes on a chromosome. Mutations occur when the number or order of bases in a gene is disrupted. The genomic signature refers to the characteristic frequency of oligonucleotides in a genome or sequence. It has been observed that the genomic signature of phylogenetically related genomes is similar.

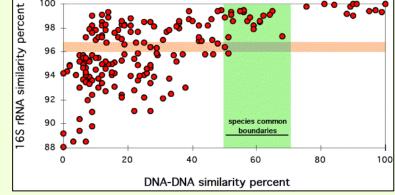
Tom Coenye


Species Concept in Prokaryotes 2.2. 16S rDNA sequences (signature sequences) Molecular clocks (chronometers)

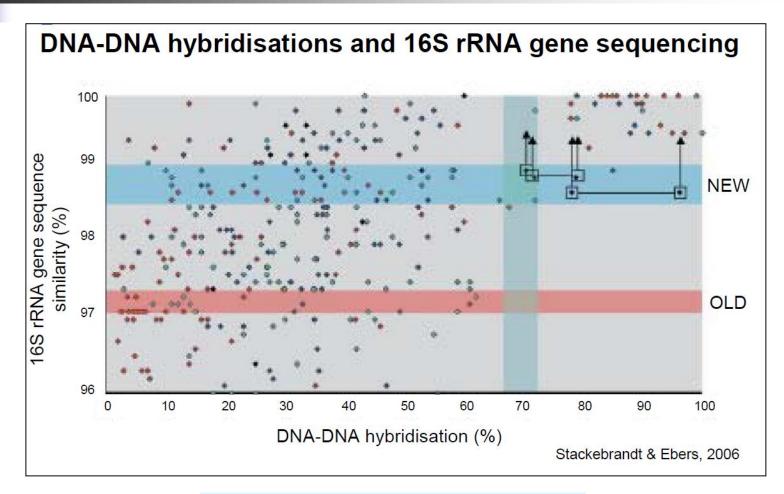
- The most widely used molecular clocks ('single locus appraoches' are small subunit ribosomal RNA (SSU rRNA) genes found in all domains of life (not the case with other chronometers)
- 16S rRNA in prokaryotes and 18S rRNA in eukaryotes.
- Functionally constant;
- Sufficiently conserved,
- Sufficient length;
- Without (?) lateral gene transfer or recombination.

Species Concept in Prokaryotes

The correlation blot of 16S rDNA and DNA-DNA similarity values


Correlation blot between 16S rDNA and DNA-DNA reassociation similarities, indicating for several phylogenetically highly related species (as determined by 16S rDNA values of > 98%) that **DNA-DNA similarities are** clearly below the threshold value of 70% recommended for species delineation.

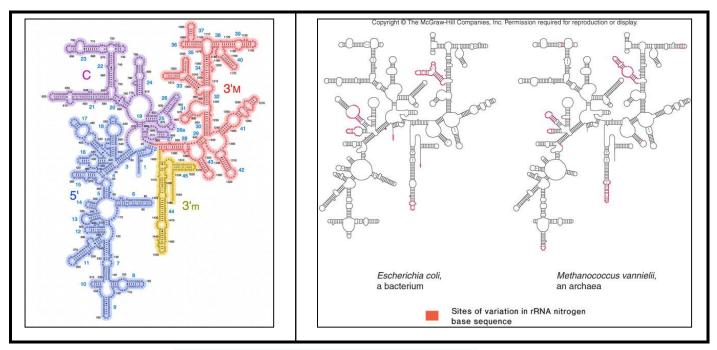
It is now generally accepted that DDH is only required when 16S rRNA gene sequence similarity between two strains is over 97%, even though higher thresholds of 98.7-99.0% have also been used.


DNA-DNA hybridizations and 16S rRNA gene similarities

- Comparison of DNA-cDNA and 16S rRNA similarities.
- Stackebrandt & Goebel (1994):
- 1. Above 97.5% 16S rRNA gene sequence similarity, DDH values can be high or low.
- 2. Organisms with less than 97.0% 16S rRNA gene sequence similarity will not show meaningful DDH values.
- Stackebrandt & Ebers (2006): revision of threshold to 98.7-99%.

Rossello-Mora & Amann,2001;T. Coenye

DNA-DNA hybridizations and 16S rRNA gene similarities


Stackebrandt & Ebers, 2006; T. Coenye

One of the most attractive potential uses of 16S rRNA gene sequence informatics is to provide genus and species identification for isolates that do not fit any recognized biochemical profiles, for strains generating only a "low likelihood" or "acceptable" identification according to commercial systems, or for taxa that are rarely associated with human infectious diseases.

Species concept

Limits of 16S rRNA sequences in elucidating the branching order of individual phyla

 Despite this success, trees based on 16S rRNA sequences lack resolution when it comes to elucidating the branching order of individual phyla.

16S rRNA molecular structure

- Although 16S rRNA gene sequencing is:
- 1. highly useful in regards to bacterial classification,
- 2. it has low phylogenetic power at the species level, and
- 3. poor discriminatory power for some genera, and DNA relatedness studies are necessary to provide absolute resolution to these taxonomic problems.
- The genus *Bacillus* is a good example of this.
- The type strains of *B. globisporus* and *B. psychrophilus* share >99.5% sequence similarity with regard to their 16S rRNA genes, and yet at the DNA level exhibit only 23 to 50% relatedness in reciprocal hybridization reactions.

- These groups include (not exclusively),
- the family *Enterobacteriaceae* (in particular, *Enterobacter* and *Pantoea*),
- rapid-growing mycobacteria, the Acinetobacter baumannii-A. calcoaceticus complex,
- Achromobacter,
- Stenotrophomonas, and
- Actinomyces.
- Some of these problems are related to bacterial nomenclature and taxonomy while others are related to different issues cited in next slides.

- Unfortunately, no universal definition for species identification via 16S rRNA gene sequencing exists, and authors vary widely in their use of acceptable criteria for establishing a "species" match.
- In none of these studies does the definition of a species "match" ever exceed 99% similarity (1% divergence).
- Based on the data listed above, even this threshold value may not be sufficient in all instances to guarantee an accurate identification.

- In the case of *Aeromonas veronii* the genome can contain up to six copies of the 16S rRNA gene that differ by up to 1.5% among themselves.
- This implies intragenomic heterogeneity of the 16S rRNA gene among aeromonads and would preclude the use of this technology alone for species identification.
- The collective data described above strongly suggest that any microbial identifications using 16S rRNA distance scores of 1% are unsatisfactory for a diagnostic or public health reference laboratory.

Limits of 16S rRNA sequences in identification of bacteria at species level Selected examples of bacterial genera and species with identification problems using 16S rRNA gene sequencing

Genus	Species			
Aeromonas	A. veronii			
Bacillus	B. anthracis, B. cereus, B. globisporus, B. psychrophilus			
Bordetella	B. bronchiseptica, B. parapertussis, B. pertussis			
Burkholderia	B. cocovenenans, B. gladioli, B. pseudomallei, B. thailandensis			
Campylobacter	Non- <i>jejuni-coli</i> group			
Edwardsiella	E. tarda, E. hoshinae, E. ictaluri			
Enterobacter	E. cloacae			
Neisseria	N. cinerea, N. meningitidis			
Pseudomonas	P. fluorescens, P. jessenii			
Streptococcus	S. mitis, S. oralis, S. pneumoniae			

- 1. It is believed that a 16S rRNA gene sequence similarity in the range of 0.5 to 1% would be required for the definition of a species.
- But some others use:
- 1. Threshold values of 1% to define a genus.
- 2. Threshold values of 1.5% to define a species.

Note: unlike DNA hybridization (70% reassociation) there are no defined "threshold values" for 16SrRNA (e.g., 98.5% similarity) above which there is universal agreement of what constitutes definitive and conclusive identification to the rank of species (Janda and Abbott, 2007).

- The cumulative results from a limited number of studies to date suggest that:
- 1. 16S rRNA gene sequencing provides genus identification in most cases (90%), but
- 2. less so with regard to species (65 to 83%), with
- 3. from 1 to 14% of the isolates remaining unidentified after testing.

- Difficulties encountered in obtaining a genus and species identification include:
- 1. the recognition of novel taxa,
- 2. too few sequences deposited in nucleotide databases, species sharing similar and/or
- 3. identical 16S rRNA sequences, or
- 4. nomenclature problems arising from multiple genomovars assigned to single species or complexes.

16S rRNA sequence analysis: Caveats (warning or caution)

16S rRNA sequence identity may not be sufficient to guarantee species identity

- Often insufficient diversity to distinguish closely related species (Fox *et al.*,1992).
- How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity.

SPECIES NAME	STRAIN NUMBER	
 "Burkholderia cepacia"	"PVFi5A"	100.0
 Burkholderia pyrrocinia	ATCC 15958T	99.8
 Burkholderia diffusa	LMG 24065T	99.8
 Burkholderia contaminans	SAR-1	99.7
 Burkholderia metallica	LMG 24068T	99.7
 Burkholderia anthina	R-4183	99.7
 Burkholderia lata	ATTC 17760T	99.7
 Burkholderia ambifaria	AMMDT	99.6
 Burkholderia cepacia	ATCC 25416T	99.6
 Burkholderia stabilis	LMG 14294T	99.6
 Burkholderia arboris	LMG 24066T	99.5
 Burkholderia seminalis	R-24196T	99.5
 Burkholderia latens	LMG 24064T	99.4
 Burkholderia ubonensis	EY 3383T	99.3
 Burkholderia vietnamiensis	TVV 75T	99.3
 Burkholderia cenocepacia	LMG 16656T	99.3
 Burkholderia multivorans	LMG 13010T	99.1
 Burkholderia dolosa	LMG 18941	99.1
 Burkholderia thailandensis	E264T	98.8
 Burkholderia pseudomallei	1026b	98.8
 Burkholderia glumae	LMG 2196T	98.7
 Burkholderia mallei	ATCC 23344T	98.7
 Burkholderia oklahomensis	C6786T	98.6
 Burkholderia gladioli pv. gladioli	ATCC 10248	98.5
 Burkholderia plantarii	LMG 9035T	98.4

Vandamme,2013

Limits of 16S rRNA sequences in identification of bacteria at species level 16 sequence data has been compared to identification results

obtained either in conventional or commercial test formats

NO. of strains	Group studied	16S			Species identification (%)			
		Size (s) (bp)	Database ^b	Criteria (%) [_]	Commercial system (s)	Conv	Comm	16S
72	GNB	1,189,527,418	MicroSeq	СМ	Conv, MIDI, Biolog	90	67.7-84.8	89.2
328	Mycobacteria		MicroSeq	99≤	Conv.	42		62.5
83	GNB, GPB		MicroSeq	СМ	Vitek 2, Phoenix		77.1	100
231	Bacteroides	711 ,899	500	99≤	Conv	74.5		83.1
47	CNS	1,500	527	97<	API StaphID, Phoenix		63.8-85.1	87.2
20	GPA	1,500	GenBank	98≤	Vitek ANA, RapID ANA II,		45-20	65
			MicroSeq		API 20A			
107	GNNFB	796	GenBank, EMBL, DDBJ	99≤	API 20NE, Vitek 2		53.2-54.2	91.6

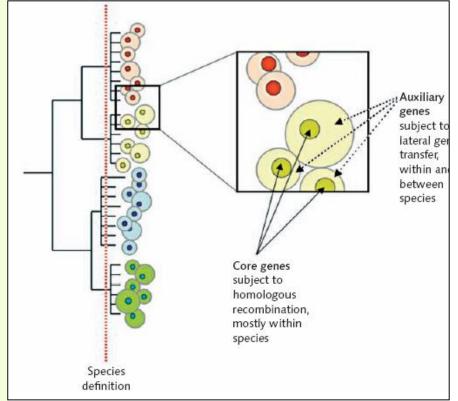
a CNS, coagulase-negative staphylococci; GNB, gram-negative bacteria; GNNFB, gram-negative nonfermentative bacteria; GPA, gram-positive anaerobes; GPB, gram-positive bacteria. *b* DDBJ, DNA Data Bank Japan; EMBL, European Molecular Biology Laboratory. *c* CM, closest match; Comm, commercial system; Conv, conventional phenotypic tests((Janda and Abbott, 2007).

880

Limits of 16S rRNA sequences in identification of bacteria at species level Recommended guidelines for use of 16S rRNA gene sequencing for microbial identification

Category	Guidelines
Strain to be sequenced	 Phenetic profile of strain is not known by general grouping to present difficulties for identification by 16S rRNA gene analysis. For such strains requiring molecular identification, another housekeeping gene is required (e.g., <i>rpoB</i>)
16S rRNA gene sequencing	 Minimum: 500 to 525 bp sequenced; ideal: 1,300 to 1,500 bp sequenced <1% position ambiguities
Criteria for species identification	 Minimum: >99% sequence similarity; ideal: >99.5% sequence similarity; Sequence match is to type strain or reference strain of species that has undergone DNA-relatedness studies; For matches with distance scores <0.5% to the next closest species, other properties, including phenotype, should be considered in final species identification.
	closest species, other properties, including phenotype

Species Concept in Prokaryotes Limits of 16S rRNA sequences with species definition


- On the brink of the new millenium, the significance of 16S rRNA as a major taxonomic criterion is receding.
- Unfortunately, the resolving power of the 16S rRNA is insufficient (not enough polymorphic) to guarantee correct delineation of bacterial species.
- Furthermore, its validity as a marker for phylogenetic inferences is being questioned.
- At the same time, recognition of lateral (horizontal) gene transfer as an important element in prokaryote evolution is gaining momentum (Lake *et al.*,1999).

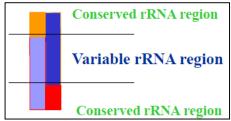
Species Concept in Prokaryotes Limits of 16S rRNA sequences with real prokaryote diversity

- Ribosomal DNA (rDNA) sequence analyses most notably those based on 16S rRNA sequences, account for a very small portion of the real prokaryote diversity.
- Thus, if we only take into account the recognized prokaryotic species for diversity calculations, their total number would never be regarded as a significant proportion of the total Earth's biodiversity.

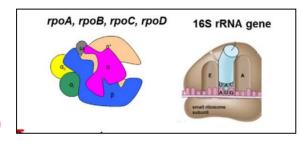
Species concept Limits of 16S rRNA sequences with real prokaryote diversity and microdiversity

- Trees based on 16S rRNA or other phylogenetic marker genes sequences often show 'microdiversity', exhibiting clusters of sequences more closely related than the value accepted as defining species (vertical hatched red line).
- Even in species so defined, genomes can show substantial (up to 30 %) variation in size and gene content.
- A 'species genome' or 'pangenome' can be imagined to comprise core genes shared by all its strains, and a set of auxiliary genes found only in some strains.
- These two classes of genes may have different evolutionary modes and tempo.

Ribosomal RNA trees

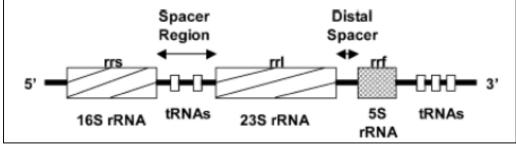

The pangenome is the collection of all genes coming from isolates of the same species.

Species Concept in Prokaryotes 2.3. Based on 16S-23S rDNA ITS


- All strains within the genus Xanthomonas that showed 70% or more DNA–DNA homology exhibited 100% 16S rDNA sequence similarity.
- Better discrimination was obtained by analysis of the 16S-23S rDNA intergenic spacer (ITS) sequence, which showed approximately ninefold higher diversity than 16S rDNA.

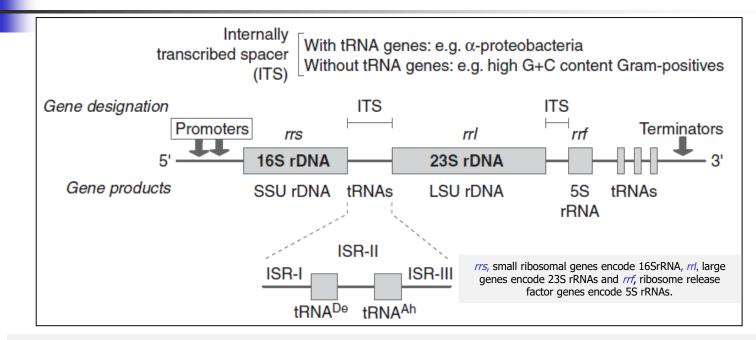
Species Concept in Prokaryotes 2.3. Based on 16S-23S rDNA ITS

- The rDNA genetic loci in eubacteria include, in 5' to 3' order: 16S, 23S, and 5S rRNA genes, which are separated by intergenic transcribed spacer (ITS) regions (16S-23S ribosomal intergenic transcribed spacer (ITS) region.
- The 16S-23S internally transcribed spacer region(ITS) is more variable in sequence, thus providing significantly greater taxonomic resolution than is found for the 16S small subunit (SSU or *rrs*) and 23S large subunit (LSU or *rrl*) genes.


Target sequences Ribosomal RNA operon (rrn)

- The rrn locus consisted of:
- 1. A 16S rRNA gene (rrs), followed by

rrs, small ribosomal genes encode 16SrRNA, *rrl*, large genes encode 23S rRNAs and *rrf*, ribosome release factor genes encode 5S rRNAs.


- 2. An intergenic transcribed spacer (ITS) containing two genes of tRNA^{Ile} and tRNA^{Ala}, a 23S rRNA gene (rrl), an ITS devoid of tRNA genes and a 5S rRNA gene (rrf).
- The internally transcribed spacer region (ITS) between the 16S and 23S rRNA genes appears to be more variable than 16S and 23S rRNA genes.

Schematic diagram of a typical ribosomal rRNA operon.

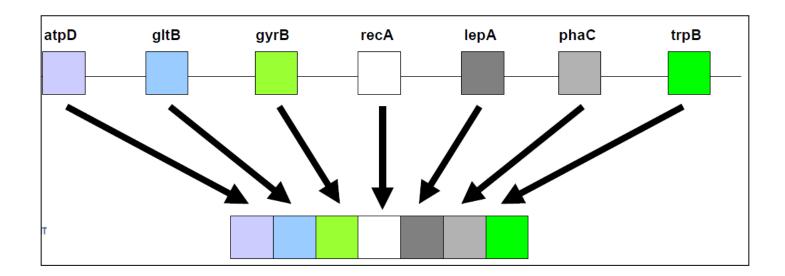
Species Concept in Prokaryotes

General structure of the prokaryotic ribosomal rRNA operon (*rrn*) Based on 16S-23S rDNA ITS

General structure of the prokaryotic ribosomal rRNA operon (*rrn*). The detection of heterogeneity of the 16S-23S ribosomal intergenic/internally transcribed spacer (ITS) region has become rather common over the past years for identification and typing purposes of bacteria.

The 16S-23S IGS region may or may not contain tandem tRNA^{Ile} (isoleucyltRNA synthetase) and tRNA^{Ala} genes. Several groups of prokaryotes do not contain such genes linked to the *rrn* operon, and others contain only one of the two tRNA genes (tRNA^{Ile} or tRNA^{Ala}) or alternatively the single tRNA^{Glu} gene. Several species have been reported to contain split *rrn* operons, in which *rrs*, *rrl* and *rrf* are not all linked to each other. The 23S/5S ribosomal RNA genes (*rrl*/*rrf*) are separate from the 16S ribosomal RNA gene (*rrs*).

Osborn and Smith,2005;..


Species Concept in Prokaryotes 2.4. MLST loci-concatenated sequence analysis for species definition

- Concatenation: The operation of joining two character strings end-to-end.
- Recently the sequencing of several housekeeping genes has been proposed as an alternative to DNA–DNA Hybridization.
- Example of genes:
- 16S rDNA, gltA, groEL, rpoB, ftsZ, ribC and internal transcribed spacer (ITS).

ribC (riboflavin synthase), *groEL* (Hsp60 chaperone), *gltA* (citrate synthase), *nlpD* (glycoprotein), *ftsZ* (cell division protein), *rpoB* (RNA polymerase beta subunit). The *rpoB* gene encodes the β subunit of bacterial RNA polymerase. *rpoB* is also found in plant chloroplasts where it forms the beta subunit of the plastid-encoded RNA polymerase (PEP).

Species Concept in Prokaryotes MLST loci- concatenated sequence analysis for species definition

The sequences of the seven loci are put end to end to form one large sequence which can be used in base pair comparisons.

Species Concept in Prokaryotes Gene-sequence-based criteria for species definition The primers used for PCR amplification of MLST housekeeping genes

The primer pairs used for the PCR amplification of internal fragments of these genes are:

Gene	Product size (bp)	Forward primer 5'-3' sequence	Reverse primer 5'-3' sequence
<i>165 rDNA</i>	472	AGAGTTTGATCCTGGYTCAG	CTTTACGCCCARTAAWTCCG
batR	487	GACCGCAATATTTTGACATC	GCATCCATCAAAGCATCACGACTT
ribC	283	AGCGAGGATCAAAACAAC	GCTCTTCAACACAATTAACG
groEL	369	GTTGATGATGCCTTGAAC	TGGTGTGTCTTTCTTTGG
gltA	338	GGGGACCAGCTCATGGTGG	AATGCAAAAAGAACAGTAAACA
nlpD	494	GGCGCTGGTATGATACAA	GACATCTGTGCGGAAGAA
ftsZ	483	GCCTTCTCATCCTCAACTTC	CTTTGTTTTAAACGCTGCC
гроВ	471	CTGGACGTACATCCTACA	AACAGCAGCTCCTGAATC

The Species Concept in Prokaryotes Different thresholds for a species delineation 2.5. Two new genome-based parameters

- Two new genome-based parameters applicable to prokaryotic taxonomy are:
- Average amino acid identity (AAI): Pairwise genome comparisons and averaging the sequence identities of shared orthologous genes (amino acid).
- 2. Average nucleotide identity (ANI): Pairwise genome comparisons and averaging the sequence identities of shared orthologous genes (nucleotide).
- Both achieve, to a great extent, the goal that whole-genome DNA hybridizations (DDH) pursued and that has been especially determinant for the circumscription of prokaryotic species.

Rosselló-Mora,2005

Orthologous genes: Genes in different species that are homologous (similar) because they are derived from a common ancestral gene.

The Species Concept in Prokaryotes New threshold for a species delineation Comparison of ANI and DNA-DNA hybridization similarity

- Phylogenetic signal present in core genes (ANI values):
- 95% ANI corresponds with 70% DNA-DNA hybridization.
- ANI does not necessarily correlate with gene content.
- > ANI values reflect phylogeny;
- Gene content reflects ecology.
- Bacteria with considerable differences in gene content are classified in the same species in spite of considerable genomic differences.
- However, due to the labour-intensive and error-prone nature of DDH experiments, average nucleotide identity (ANI) was replaced with DDH.

Whole genome sequencing (WGS) Next Generation Sequencing (NGS) Genome-wide Average Nucleotide Identity (gANI) metric

- Whole-genome comparison-based classification methods such as Average Nucleotide Identity (ANI) have been demonstrated to correlate well with the previous 'gold-standard' DNA–DNA hybridization (DDH) approaches to evaluation of genomic relationship.
- In particular, an established threshold of 95% sequence identity by ANI was found to correspond to the traditional 'gold standard' prokaryotic species threshold of 70% identity by DDH.

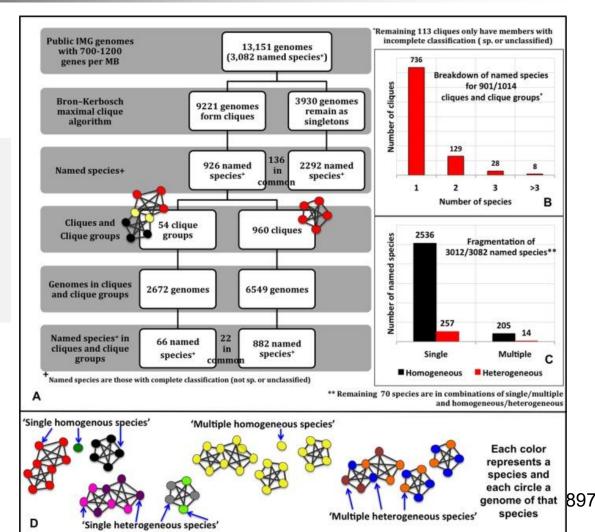
Whole genome sequencing (WGS) Next Generation Sequencing (NGS) MiSI (Microbial Species Identifier) method

- Recently, the related MiSI (Microbial Species Identifier) method has been proposed as an approach for correction of inconsistent prokaryotic species classification, and for taxonomic assignment of newly-sequenced organisms.
- For MiSI, a common gene content of at least 60% of the complement, with at least 96.5% nucleotide sequence identity between reciprocally best-matching genes, is found to correspond well to species boundaries.
- The MiSI method was systematically applied to over 13000 sequenced prokaryotes in the NCBI public database.
- Both ANI and MiSI techniques identify misclassified genomes in the public repositories; up to 18% of all annotated species in public sequence databases were indicated to include potentially misclassified isolates, by MiSI.

Pritchard et al.,2016

Whole genome sequencing (WGS) Microbial species delineation using whole genome sequences

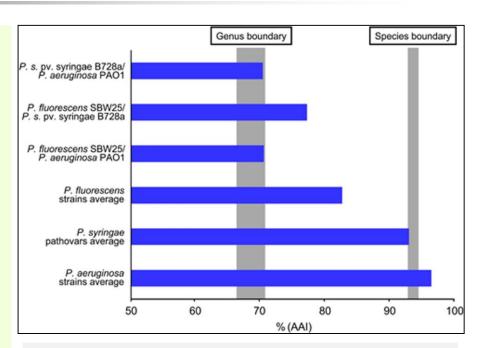
- A. Breakdown of genomes and species into cliques, clique groups and singletons. This figure shows the number of genomes and named species at each step of our method. The genomes/species in common are annotated between the boxes.
- B. Breakdown of named species for 901 clusters. This graph shows how many clusters are populated by one species, two species and so on.
- c. Breakdown of species into different categories. This graph shows how many species fall into the 'single homogeneous', 'multiple homogeneous', 'single heterogeneous' and 'multiple heterogeneous' species category.
- D. Pictorial description of the species categories. Each color represents a species and each circle a genome of that species. Species 'black' is present only in one clique and that clique only has genomes of that species, making it a 'single homogeneous species'. Species 'pink' has genomes in only one clique group, but that clique group has genomes from other species ('purple'), thus making it a 'single heterogeneous species'. The genomes of species 'yellow' are present in multiple clusters, but each cluster they belong to only have genomes of that species, making it a 'multiple homogeneous species'. Species 'blue' has genomes in multiple clusters and each cluster has genomes of other species (orange, brown), thus making species 'blue' a 'multiple heterogeneous' species.


Clique: a group of individuals who interact with one another and share similar interests. Individuality and cliques are common in bacterial communities.

Varghese et al.,2015

Whole genome sequencing (WGS) Microbial species delineation using whole genome sequences

Microbial species delineation using whole genome sequences. MiSI method was used for clustering of genomes and Species assignment.

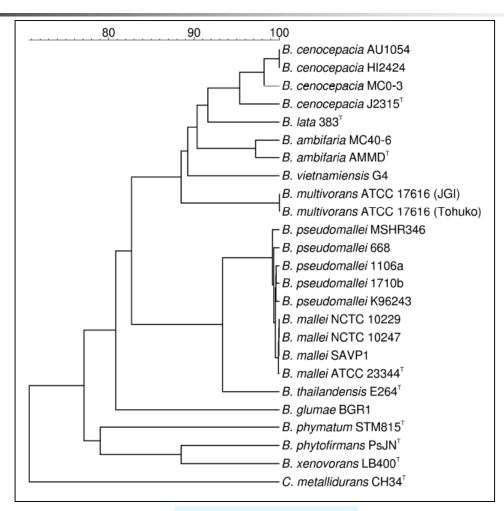


The Species Concept in Prokaryotes New threshold for a species delineation Genome-wide Average Nucleotide Identity (gANI) metric

- Average nucleotide identity (ANI) and average amino acid identity (AAI) use pairwise comparisons of isolates based on genes and proteins conserved between particular pairs to determine relationships.
- Using MLST, gANI and AAI, and a gene-independent analysis of dinucleotide composition, recent studies have directly examined the relatedness of different bacterial species within the recognized genera such as *Pseudomonas* spp., *Erwinia* spp., *Rhizobium* spp., etc.

The Species Concept in Prokaryotes New threshold for a species delineation Comparison of ANI and DNA-DNA hybridization similarity

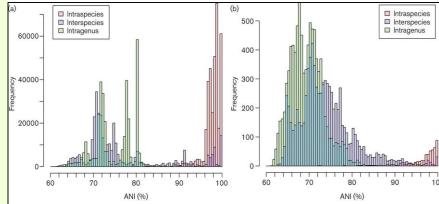
- AAI for pairs of *Pseudomonas* spp.
- While *Pseudomonas fluorescens* strains do not reach the species cutoff, they are more closely related than SBW25 is to PAO1.
- Genus and species boundaries are as defined.


In particular, an established threshold of 95% sequence identity by ANI was found to correspond to the traditional 'gold standard' prokaryotic species threshold of 70% identity by DDH.

Silby et al.,2011

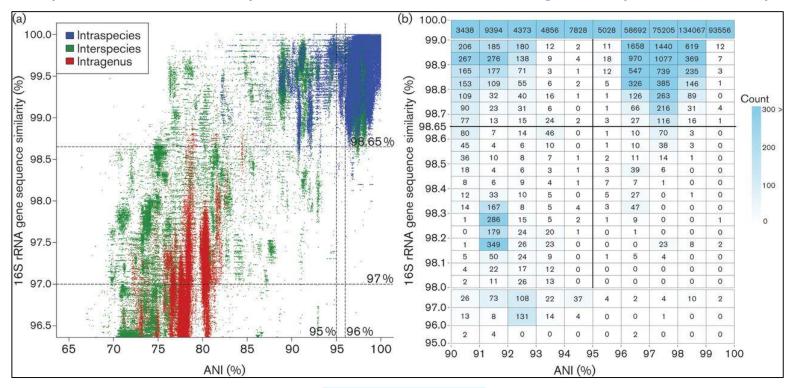
The Species Concept in Prokaryotes New threshold for a species delineation Comparison of ANI and 16S rRNA gene sequence similarity

- Average nucleotide identity (ANI) is one of the most robust measurements of genomic relatedness between strains.
- Because there is a close correlation between ANI and 16S rRNA gene sequence similarity.
- The optimal threshold of 16S rRNA gene sequence similarity for species delineation that corresponds to 95-96% ANI.

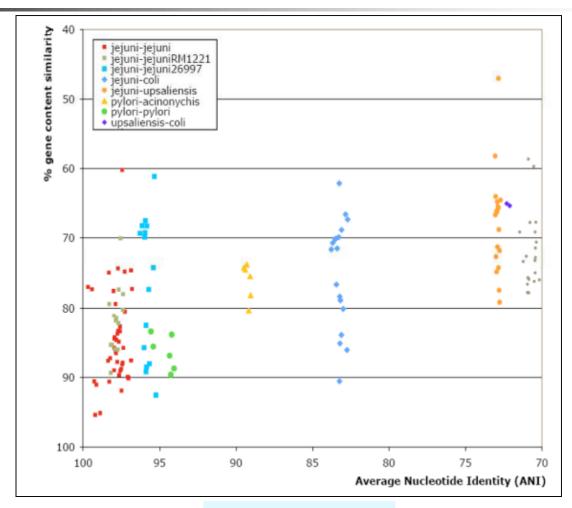

The Species Concept in Prokaryotes New threshold for a species delineation ANI based phylogeny

Vandamme,2013

The Species Concept in Prokaryotes New threshold for a species delineation Comparison of ANI and 16S rRNA gene sequence similarity


- a) ANI distribution based on all genomes and
- b) A normalized set of genomes.
- Each colour represents pairwise ANI calculations between strains belonging to different taxonomic ranks:
- between two strains belonging to the same species (orange),
- belonging to different species (green) and
- belonging to different genera (purple).
- Mean ANI values per species are represented in (b).

Using ANI as a substitute for DDH, our proposed threshold of 98.65% would greatly speed up the process of recognizing novel species.


The Species Concept in Prokaryotes New threshold for a species delineation Comparison of ANI and 16S rRNA gene sequence similarity

 Association plot (a) and table (b) between ANI values and 16S rRNA gene sequence similarities. The number of strain pairs is displayed in each category square when divided by several intervals in 16S rRNA gene sequence similarity.

Kim *et al.*,2014

The Species Concept in Prokaryotes New threshold for a species delineation Comparison of ANI and 16S rRNA gene sequence similarity

Vandamme,2013

Bacterial systematics, ecology, and evolution

Ecology-based approaches Cohan Ecotype Concept

Frederick M. Cohan

Professor of biology at Wesleyan University Email: fcohan@wesleyan.edu

Biographical Sketch

- Frederick Cohan studies the origins of ecological diversity in bacteria.
- He is a professor of biology and environmental studies at Wesleyan University, where he teaches classes in the origins of bacterial diversity, evolutionary bioinformatics, global change and infectious disease, and introductory biology.
- He graduated from Pasadena High School and earned his BS at Stanford in Biological Sciences.
- He was the first to earn a PhD from Harvard's Organismic and Evolutionary Biology Department.

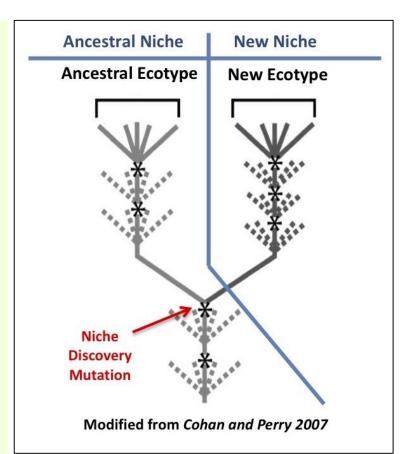
His group has also developed an "ecotype simulation" approach to determine the sequence clusters that correspond to bacterial ecotypes (See ecotype simulation web site).

Bacterial systematics, ecology, and evolution Speciation Evolution of new species

- Biology features a lot of big questions, and how new species evolve is one of the biggest and most important.
- Speciation increases diversity and complexity, and, importantly, it allows organisms to explore new evolutionary paths.
- There is little in biology that isn't touched by speciation, and it is little wonder that Darwin himself referred to it as "that mystery of mysteries."

Whittaker,2013

Bacterial systematics, ecology, and evolution Definition of species The broad definition


- Are bacterial species real? Are there species in the world of bacteria?
- There is no doubt that species exist, and that it is useful to classify, name, and describe them.
- In bacterial systematics, species are defined as groups of close relatives that are separated from one another by large gaps in phenotypic and molecular characters (Vandamme *et al.*,1996).
- This broad definition practiced by bacterial systematics is not implemented and not totally acceptable by the microbial ecologists and evolutionary biologists.

Bacterial systematics, ecology, and evolution Definition of species Cohan definition

- We define ecotype here as a phylogenetic group of close relatives that are ecologically very similar, in that the members of an ecotype share genetic adaptations to a particular set of habitats, resources, and conditions.
- More specifically, different ecotypes are predicted to coexist indefinitely as a result of their ecological differences, while lineages within one ecotype are ecologically too homogeneous to allow indefinite coexistence.
- The present definition of ecotype implies no other specieslike characteristics beyond ecological distinctness.

Bacterial systematics, ecology, and evolution Frederick Cohan's Ecotype Species Concept (ESC)

- Frederick Cohan's Ecotype Species Concept (ESC), emphasizes the evolution of ecological differences.
- It argues that a bacterial species is born when a mutation grants access to a new niche, resulting in a new lineage called an ecotype.
- Because the new ecotype and its parent occupy difference niches, they are able to coexist and evolve independently.

Whittaker,2013

Bacterial systematics, ecology, and evolution Variation in numbers

- Bacteria have been exploring evolutionary adaptations much longer than eukaryotes.
- There are ~10,000 described bacterial species.
- However, the vast majority of bacterial species have not been described.
- Estimates range considerably, but <1% of bacteria are believed to be able to be cultured.
- Estimates place the total number of bacterial species at 5-10 million. That's an almost unanswerable question.

Note: The number of recognized bacterial species is constantly updated by this site: <u>http://www.bacterio.cict.fr/number.html#total</u> The current number is 10,929.

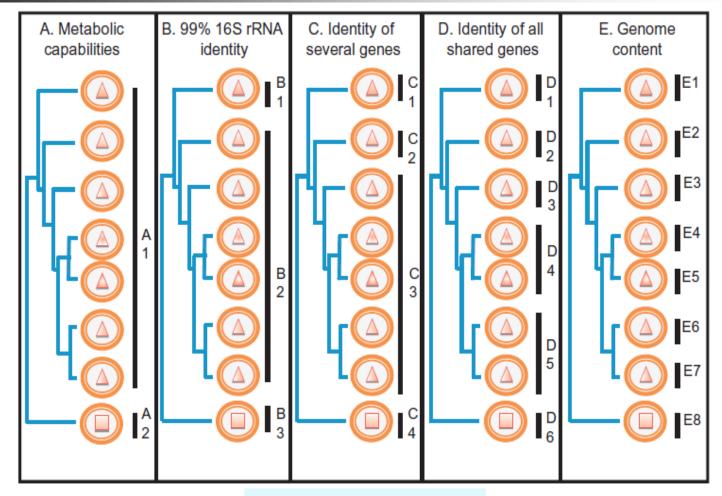
Bacterial systematics, ecology, and evolution Variation in numbers

- Genome sequencing has become the standard for the study of bacterial species.
- Of the described species:
- As of October 2013,
- 6851 bacterial genomes have been completed;
- Sequencing of 18679 are ongoing, and
- 1111 represent targeted genome projects (Gold Genomes OnLine Database, http://www.genomesonline.org)

Kishore *et al.*,2015

Bacterial systematics, ecology, and evolution Variation in numbers and traits

- Re-analyses of the Torsvik work suggests tens of millions of species in that soil collection of Torsvik.
- Computational improvements reveal great bacterial diversity and high metal toxicity in soil and that there might be billions of bacterial species worldwide:
- Why are there so many species of bacteria?


Bacterial systematics, ecology, and evolution Variation in numbers and traits

- Molecular surveys suggest that bacterial species may number in the millions or even billions (Cohan, 2011).
- According to pioneering work of Torsvik *et al.*,1998 and 2002, 30g of forest soil held about 10000 species.
- There is variation within a typical species recognized by systematics:
- 1. genome content,
- 2. DNA sequence, phenotype, and
- 3. ecology typically seen within the named bacterial species.

Courtesy Cohan,2006

- **A.** Variation in phenotypes
- **B.** Variation in 16S rRNA gene
- c. Variation in several genes
- **D.** Variation in shared genes
- **E.** Variation in genome content
- **F.** Variation in ecological diversity

Bacterial systematics, ecology, and evolution Species demarcations under different criteria Gene content reflects ecology (split close relatives that are ecologically identical into different species)

Kopac and Cohan, 2011

A. Variation in phenotypes:

Species were originally defined as groups that differ to a large extent in metabolic capability (indicated by triangle versus square), frequently with much metabolic diversity within each species (indicated here by shading differences within the triangles).

B. Variation in 16S rRNA gene:

Defining a species as a group of organisms sharing at least 99% 16S rRNA identity can split the metabolically defined species in the previous panel, as seen here by the splitting of species A1 into B1 and B2.

C. Variation in several genes:

- Defining species as: clusters based on several protein-coding gene sequences can split a 16S-defined species into groups that are each more ecologically homogeneous.
- This is seen here by the splitting of species
 B2 into C2 and C3.

D. Variation in all shared genes:

- Defining species as: clusters based on sequence identity for all shared genes can divide species even further with, for example, species C3 being split into D3, D4, and D5.
- This may be the most highly resolving method for identifying species based on sequences of shared genes.
- Within species D4, we can see the possibility that even with this level of resolution for species demarcation, there may still be ecological heterogeneity (indicated by the difference in shading between cells in species D4).
- Species D5 shows an alternative model where this high level of resolution finds clusters that are ecologically homogeneous, as noted by the same shading patterns among members of D5.

Kopac and Cohan, 2011

Bacterial systematics, ecology, and evolution Species demarcations under different criteria Variability in gene content

E. Variation in genome contents:

- Genomes seem to be composed of:
- 1. A core set of genes that is conserved among strains of the same species and
- 2. Accessory genes that are strain specific.
- Content and size of core vary with species.

Variation in genome GC content, which varies in different organisms from as low as 17% to as high as 75%. This variation is generally ascribed to differences in the pattern of mutation between bacteria.

Konstantinidis and Tiedje,2005;Vandamme,2013

E. Variation in genome contents:

- Defining species by identity of genome content could spuriously split close relatives that are ecologically identical into different species.
- Note that the two organisms within D5, with the same ecology, are split on the basis of genome content into different species.
- In this case, E6 and E7 would most likely be different for phage or insertion sequence genes that do not specify ecological niche.

Kopac and Cohan, 2011

Bacterial systematics, ecology, and evolution Definition of species Drawbacks of old approaches

The systematics of bacteria does not aim to demarcate diversity at fine level of ecotypes, and indeed, we have shown that the named species of bacteria typically contain multiple ecotypes (a group of bacteria that are ecologically similar to one another).

Genome sequencing Definition of species The new approaches

The information emerging from genome sequencing, together with information from other approaches such as gene expression studies, should eventually converge to a more soundly based bacterial species definition.

Bacterial systematics, ecology, and evolution Definition of species The new approaches

- The molecular revolution has taken us far beyond the early days of systematics, when species demarcation was based entirely on metabolism and other phenotypic traits.
- Sequencing has now revealed ecologically distinct populations within the recognized species, yet we do not take advantage of this information to refine the demarcations of species.
- The time has come to incorporate the high resolution of molecular technology into our taxonomy, so that the physiological and ecological diversity we know to exist within the named species can be officially recognized.

Kopac and Cohan, 2011

Bacterial systematics, ecology, and evolution F. Variation in ecological diversity Ecotype concept

- Even though bacterial species were originally demarcated as phenotypic (usually metabolic) clusters, most species recognized by bacterial systematics are highly diverse in their metabolic capabilities.
- The molecular methods suggest that a typical named species contains many ecotypes, each with the universal attributes of species.
- A named bacterial species is thus more like a genus than a species.

Cohan,2002;2006

Bacterial systematics, ecology, and evolution Variation in ecological diversity What is an ecotype?

Although the ecotype is not recognized as an official rank of bacterial taxonomy (Brenner *et al.*,2000), the concept of ecotype is important for microevolutionary studies because it describes a collection of strains that shows some level of ecological distinctiveness within its species (Schloter *et al.*,2000; Cohan,2001).

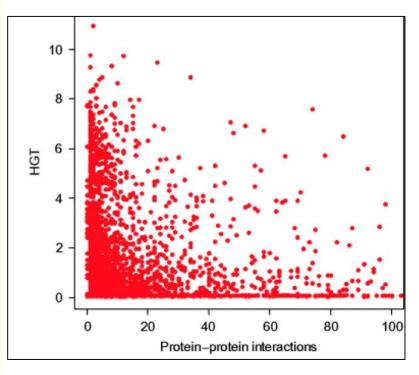
Konstantinidis *et al.*,2006

Bacterial systematics, ecology, and evolution Variation in ecological diversity The challenge to microbial ecology

- The challenge to microbial ecology is:
- To identify the ecologically distinct bacterial groups (ecotypes) within a community, and
- 2. To determine what differences allow them to coexist and to perform different ecosystem functions.

Bacterial systematics, ecology, and evolution Differences in ecotypes of the same species

- Members of the same ecotype would therefore be expected to have only small gene content (or expression) differences compared with other ecotypes of the same species, or
- If larger differences exist, they would be carried by unstable parts of the genome such as plasmids.
- Our analysis reveals that justifiable ecotypes are observable among homogeneous groups of strains (e.g. *Streptococci*), even among almost identical strains of the *E. coli* and *Salmonella* groups.


- According to Doolittle and colleagues, there is a continuum of genetic diversity, with no two strains in nature having the same ecology.
- Cohan hypothesis is that there are many newly divergent ecotypes, each being ecologically homogeneous.
- But which idea is true (and whether there is a true continuum of diversity) is not clear yet.

- Species are cohesive, in the sense that genetic diversity within a species is limited by a force of evolution.
- The origin of bacterial species is accelerated by unique features of bacterial genetics, perhaps the most important being the ability of bacteria to readily acquire genes from other organisms.
- Early evidence of the importance of horizontal genetic transfer (HGT) in bacterial evolution was seen in the spread of penicillin resistance through plasmid transfer across the Enterobacteriaceae.

- More recent HGT events have resulted in important ecological differences between closely related species and between populations within a single recognized species taxon (Welch *et al.*,2002).
- For example, the virulence factors that distinguish Salmonella from Escherichia coli were largely acquired by HGT.

Wiedenbeck & Cohan,2011

- The relationship between the number of HGT events and the number of proteinprotein interactions.
- Each dot represents a gene family, and the number of protein-protein interactions for a given family is quantified as the number of other gene families with which the given family interacts.

Cohen,2011;Oxford University Press

Ecology-based approaches An Ecotype-Based Systematics New approach in defining bacterial species

- Ecology-based approaches (ecological differences of bacterial populations) will help the bacterial systematics to define the species more precisely.
- Most importantly, a named bacterial species is typically an assemblage of ecologically distinct populations that are able to coexist in the same region (Scholer *et al.*,2000; Lopez-Lopez *et al.*,2005 & Smith *et al.*,2006).
- We have proposed a systematics for identifying ecotypes, the fundamental units of bacterial ecology and evolution.

Ecology-based approaches An Ecotype-Based Systematics New approach in defining bacterial species

- Fortunately bacterial systematics like plant and animal systematics now aims to identify species that represented the fundamental units of ecology and evolution.
- But, the established institutions of bacterial systematics (e.g., the DSMZ) may have no intention of changing systematics to recognize ecotypes.

Bacterial systematics, ecology, and evolution Definition of species Alternative theories of bacterial speciation

- We are testing alternative theories of bacterial speciation:
- 1. The Stable Ecotype model (where ecotypes are long-standing and are recurrently purged of diversity by periodic selection),
- 2. The Species-Less model (where ecotypes are not subject to cohesive forces), and
- 3. The Nano-Niche model (where most-closely-related ecotypes are only quantitatively different in their ecological niches).

The dynamics of ecotype formation and periodic selection within an ecotype

- Diversity within an ecotype is only transient, awaiting its demise(the end of existence or activity) with the next periodic selection event.
- The question is what is the source of permanent divergence among closely related bacteria?
- Ecological diversity in bacteria is governed by different mutations (or recombination events).
- When a mutation (or recombination event) places the organism into a new ecological niche and the organism thereby founds a new ecotype.

The dynamics of ecotype formation and periodic selection within an ecotype

- The adaptive mutation (indicated by an asterisk) originally occurs in Ecotype 1.
- After the selective sweep, a small region of chromosome around the adaptive mutation (between 1L and 1R) enters Ecotype 2, causing a selective sweep in that ecotype.
- Then a segment around the adaptive mutation (between2L and 2R) enters Ecotype 3, causes a selective sweep there, and so on.

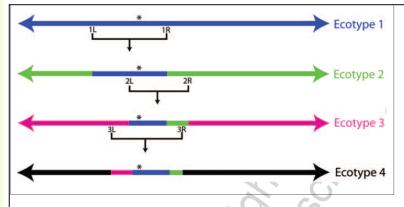


Figure 6. In the adapt globally, act locally model, the region that is homogenized is expected to differ between each pair of ecotypes. The adaptive mutation (indicated by an asterisk) originally occurs in Ecotype 1. After the selective sweep, a small region of chromosome around the adaptive mutation (between 1L and 1R) enters Ecotype 2, causing a selective sweep in that ecotype. Then, a segment around the adaptive mutation (between 2L and 2R) enters Ecotype 3, and causes a selective sweep there, and so on. The source of DNA along the chromosome is indicated by shade. The entire ensemble of ecotypes becomes homogenized for the sequence near the adaptive mutation, but the boundaries of the homogeneous region differ for each pair of ecotypes. For example, Ecotypes 1 and 2 are identical between 1L and 1R, while Ecotypes 2 and 4 are identical between 2L and 3R.

Here is showing how, even though there is genome-wide purging within each ecotype, there can be a sweep of a small chromosome segment across many different ecotypes.

Cohan,2005

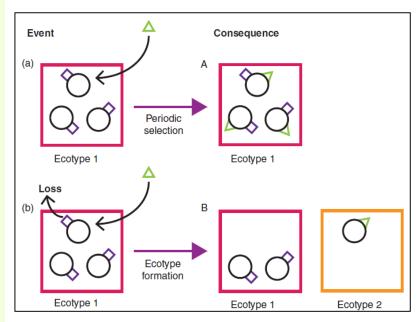
The dynamics of ecotype formation and periodic selection within an ecotype

- Because the new ecotype is ecologically distinct from the parental ecotype, periodic selection events in the parental ecotype cannot extinguish (end or death of) the founding organism and its descendants (fig).
- 1. Thus, the new ecotype escapes the periodic selection of the parental ecotype, and
- 2. The two new ecotypes are free to diverge indefinitely.

The dynamics of ecotype formation and periodic selection within an ecotype

a) Ecotype-formation event.

A mutation or a recombination event allows the cell to occupy a new ecological niche, founding a new ecotype. A new ecotype can be formed only if the founding organism has undergone a fitness tradeoff, whereby it cannot compete successfully with the parental ecotype in the old niche.

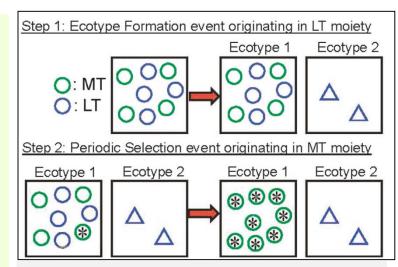

b) Periodic selection event.

- A periodic selection mutation improves the fitness of an individual such that the mutant and its descendants outcompete all other cells within the ecotype; these mutations do not affect the diversity within other ecotypes because ecological differences between ecotypes prevent direct competition.
- Periodic selection leads to the distinctness of ecotypes by purging (removing) the divergence within, but not between ecotypes.

Wiedenbeck & Cohan, 2011

The consequences of a change in ecological niche following an HGT event

- Acquisition of a new ecological function by HGT (indicated by the green triangle) either cause:
- A. A periodic selection event (improves the fitness of an individual), or
- B. An ecotype formation event (allows the cell to occupy a new ecological niche, founding a new ecotype).

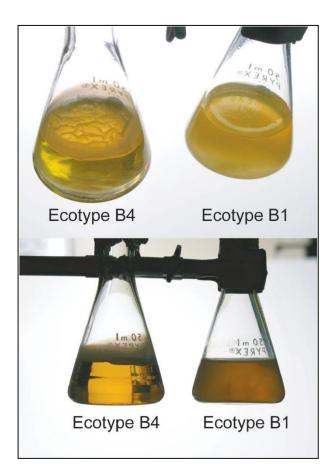

Wiedenbeck & Cohan, 2011

New species can arise as frequently as adaptations within a species Identification of putative ecotypes

- We could identify putative ecotypes formed in different communities through differences in:
- 1. Genetic marker association,
- 2. Colony morphology, and
- 3. Microhabitat association.

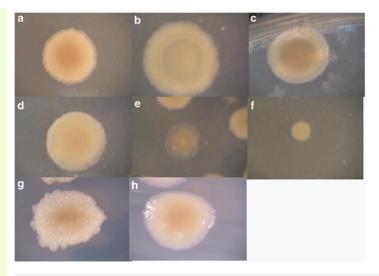
Periodic Selection and Ecological Diversity in Bacteria New species can arise as frequently as adaptations within a species

- Each box represents an ecotype;
- Each circle or triangle represents an individual organism within an ecotype;
- The different colors indicate the selectable markers methionine (MT) and lysine (LT);
- An asterisk indicates a mutant strain that is adaptive within its ecotype's niche.



We generated prototrophic revertant mutants for lysine (MT) and methionine (LT) by selection on plates with minimal medium (including Spizizen salts, glucose and 10 mg^{ml1} required amino acids). Each colony was streaked for isolation three times on modified Luria broth plates and selectable markers (LT or MT) were reconfirmed on selective minimal media.

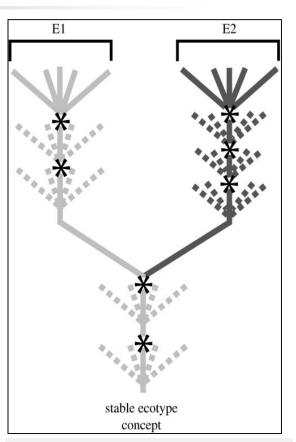
Koeppel et al.,2013


Evolution in a bottle Mat formation

- Differences in mat-forming ability of putative ecotypes B4 and B1 within community B.
- Putative ecotype B4 (LT, morphotype 4) formed a dense mat on the surface of the medium,
- While putative ecotype B1 grew in the broth phase, suggesting niche partitioning on the basis of microhabitat specialization.

New species can arise as frequently as adaptations within a species Colony morphology

- We could identify putative ecotypes through differences in colony morphology.
- a. Morphotype 1 was the ancestral morphotype.
- All other morphotypes were unique to a particular marker moiety (LT or MT) and a single community.

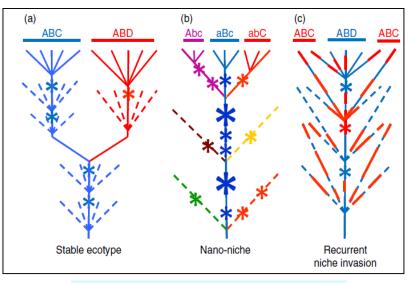


As mentioned earlier, the prototrophic revertant mutants for lysine (MT) and methionine (LT) was generated by selection on plates with minimal medium Each colony was streaked for isolation three times on modified Luria broth plates and selectable markers (LT or MT) were reconfirmed on selective minimal media.

Koeppel et al.,2013

Source of permanent divergence among closely related bacteria

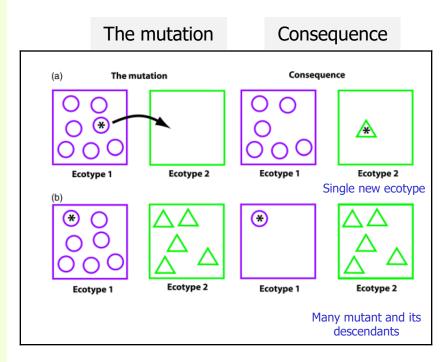
- The phylogenetic history of two closely related ecotypes under the stable ecotype model.
- After each periodic selection event, indicated by an asterisk, only one variant from an ecotype survives.
- After periodic selection, the descendants of the surviving variant diverge (indicated by dashed lines), but with the next periodic selection event, again only one variant survives.
- The sequence diversity within an ecotype is much less than sequence divergence between members of different ecotypes.



*, periodic selection event ---, descendants of the surviving variant diverge

Cohan,2006

Periodic Selection and Ecological Diversity in Bacteria The stable ecotype model Models of bacterial speciation


- 1. Ecotypes are represented by different colors;
- 2. Periodic selection events are indicated by asterisks, and
- 3. Extinct lineages are represented by dashed lines.
- The Stable Ecotype model is marked by a much higher rate of periodic selection than ecotype formation.

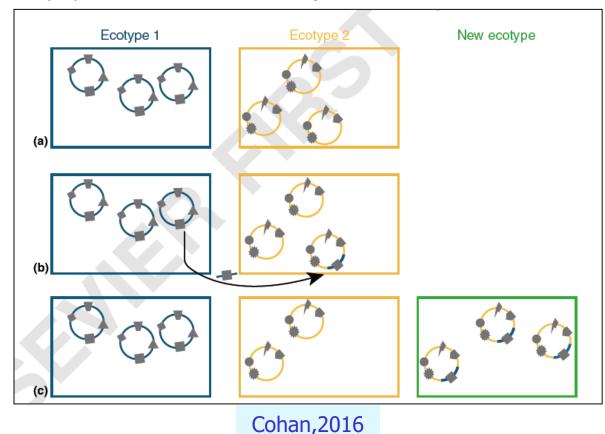
Wiedenbeck & Cohan, 2011

The dynamics of ecotype formation and periodic selection within an ecotype

- Circles represent different genotypes, and asterisks represent adaptive mutations.
- a) Ecotype-formation event: A mutation or a recombination event allows the cell to occupy a new ecological niche, founding a new ecotype.
- Periodic selection event: A periodic selection mutation improves the fitness of an individual such that the mutant and its descendants outcompete all other cells within the ecotype.

Wiedenbeck & Cohan,2011

Recombination between nascent species can promote their coexistence

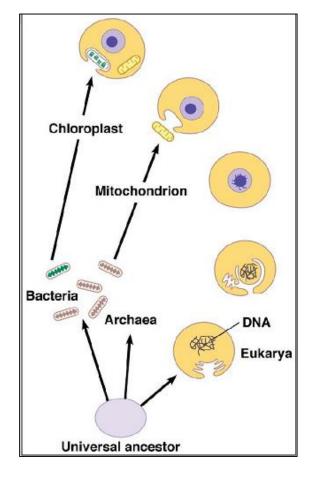

- Recombination between nascent (recently formed or developed species) can promote their coexistence.
- Circles represent different genotypes within each ecotype.
- Asterisks represent a mutation giving an exceptionally competitive advantage to the genotype that possesses it.
- A. When no recombination occurs, the adaptive mutant in Ecotype 1 causes the extinction of Ecotype 2, along with all other genotypes in Ecotype 1.
- B. With recombination, the adaptive allele may be transferred into Ecotype 2, causing a periodic selection event in that ecotype, and allowing for the continued coexistence of both ecotypes.

Cohan and Koeppel,2008

Recombination between nascent species can promote their coexistence

 The consequences of an adaptive genetic transfer between ecologically distinct populations when an adaptive transfer creates a new ecotype.

Periodic Selection and Ecological Diversity in Bacteria Ecological theory Reasons for coexistence of the species


- Ecological theory tells us that species cannot coexist for the long term unless:
- 1. They use different resources, or
- 2. Thrive (grow and develop) in different conditions, or
- 3. Respond differently to their predators and pathogens (Chase & Leibold, 2003).


Periodic Selection and Ecological Diversity in Bacteria Ecological theory Reasons for coexistence of the species

- There are certainly many resource dimensions upon which bacteria could diversify:
- 1. There are probably very few carbon sources that cannot be used by at least one bacterium; for example, some bacteria can use ordinary toxic compounds and ordinary insoluble macromolecules.
- 2. In addition, each of the many eukaryotic species may have its own exclusive bacterial endosymbionts and pathogens.
- 3. Bacteria can coexist on the basis of different unusual conditions under which they can grow, including an extreme range of salinity, temperature and radiation.

Courtesy Cohan,2006

Periodic Selection and Ecological Diversity in Bacteria Ecological theory Reasons for coexistence of the species

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Genome sequencing

rDNA sequencing

rDNA sequencing Goal and Background

Goal

- Learn and understand the steps necessary to make a phylogenetic assignment for a nucleotide sequence (here the bacterial 16S rDNA).
- Background
- The nucleotide sequence of extracted nucleic acid can be compared with a database of already assigned sequences.

DNA Sequencer (any brand)

DNA sequencing

- By the mid-1990s, sequencing of the small subunit (16S) rDNA genes had become commonplace, considered a standard tool of microbial taxonomists not only for elucidating phylogenetic relatedness but also as a means of bacterial identification.
- The automation of 16S rDNA gene sequencing with such instruments as the ABI Prism 377 DNA sequencer (Applied Biosystems, Foster City, Calif.) allowed for a quick comparative analysis of published sequences deposited in microbial genome databases.
- Today, bacterial strains that defy identification by conventional commercial methodologies are often subjected to 16S rDNA sequence analysis so that a useful label can be placed on the isolate in question.

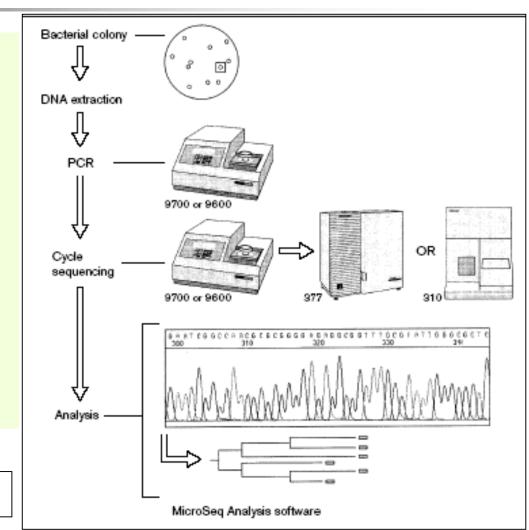
DNA sequencing rDNA sequences

- DNA sequencing has become established in the routine laboratory.
- Sequencing currently is being used for the:
- 1. Identification of organisms that are difficult to identify using conventional methods or
- 2. To detect and identify uncultivable organisms.
- These rDNA sequences are the cornerstone of studies on taxonomy and phylogenetic relationships between bacterial or fungal species.
- rDNA sequences of different organisms available in publicly-available databases are far greater than any other region of the genome (Ward *et al.*,2004).

DNA sequencing 16S rDNA sequences

- 16S rDNA is the normal target for sequencing.
- Some of the rDNA regions are well conserved throughout the evolutionary process and other parts are variable even within a species.
- However, the equivalent rDNA gene fragments detected in different organisms have sequence variations that can be exploited for the subsequent selection of pathogenspecific primer sequences allowing the identification of the pathogen in question.
- Other conserved regions in the microbial genome, such as hrp genes, 16-23S rDNA interspacer region, ribosomal spacer region, rpoB gene, gyrB gene, or elongation factor Tu, can be used (sequenced) as alternative targets to differentiation below the species level (pathovar level).

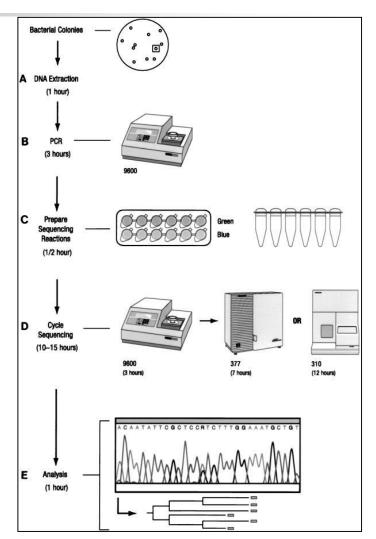
Steps of sequence analysis Principles


- 1. Extract nucleic acid from isolates or amplify sequence in the polymerase chain reaction.
- 2. Purify pure culture or amplified DNA using a kit.
- 3. Send to sequencing facility for PCR based sequencing with an appropriate primer.
- 4. Edit sequence.
- 5. Using the web based database (The Ribosomal Database Project, RDP) find closest relative to the primary structure of this sequence with Sequence Match.
- 6. Align sequences with aligned sequences of the closest relatives from the RDP database using alignment software. Proof read the alignment: base the alignment of conserved and variable areas on secondary structure of a closely related organism (available from your instructor or specified web pages.
- 7. Create a distance matrix.
- 8. Test sequence for potential chimeric structures.
- 9. Export the aligned product and the aligned sequences of the closest relatives into software able to create a tree of phylogenetic relationship based on specific algorhythms.
- Now enough is known to design a probe for the analyzed sequence.

Steps of sequence analysis Sequence analysis of 16S rRNA gene

- Genomic DNA is extracted directly from dead or alive bacterial colonies grown under any conditions.
- The 16S rRNA gene is amplified using universal primers and thermalcyclers.
- The amplified 16S rRNA gene product is sequenced using dye terminator sequencing.
- The sequence reactions are analyzed using automated DNA sequencers and software.
- Dependant upon the level of confidence, speed and cost desired, either the entire 1540 base pair 16S rRNA gene, or a smaller portion of the gene can be (500 bp) sequenced.
- A printout of the actual sequence data and the identification is included in each report.

Steps of sequence analysis Sequence analysis of 16S rRNA gene

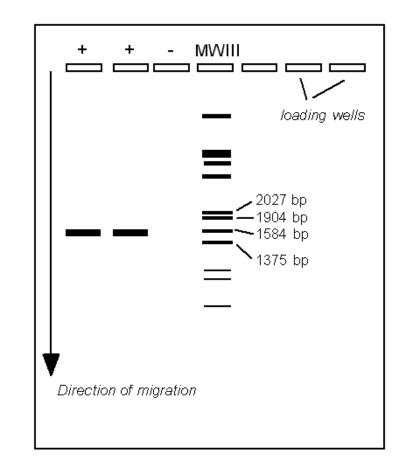

- Extract DNA from a colony, or from an environmental sample without growing the organism.
- PCR with primers for rRNA sequences.
- Automated DNA sequencer
- Coefficient of Similarity.

Ribosomal DNA sequencing as a tool for identification of bacterial pathogens Christopher P Kolbert* and David H Persing[†]

Steps of sequence analysis Sequence analysis of 16S rRNA gene

- Flowchart of the MicroSeq process from culture to sequence
- The total elapsed time was 15.5 to 18.5 h, comprising:
- A. Bacterial DNA extraction,
- в. PCR,
- c. Sequencing reaction preparation,
- D. Cycle sequencing,
- E. Analysis.
- The time required for each step is indicated.

Tang *et al.*,1998


Steps of sequence analysis 1. Extract DNA and set up a PCR reaction

- 1. Scrape a small blob of cells from the agar plate.
- 2. Stir the loop into a microcentrifuge tube containing 500 ml of sterile water. Close the tube and vortex very well (about 1 minute or until the cell clump is dispersed).
- 3. Place the tubes into a boiling water bath for 10 min. Use the special tube holder to prevent the tops of the tubes from opening during boiling.
- 4. Remove from the bath and centrifuge the tube contents for 10 min at 13,000 rpm in the microcentrifuge.
- 5. Transfer approximately half the supernatant to clean, labeled microcentrifuge tubes using an automatic pipettor.
- This will serve as the DNA template for your PCR reaction.
- If you need to stop at this point, you can store the DNA preparation (i.e., supernatant) in the freezer.

Moran,2010

Steps of sequence analysis 2. Examine PCR product on agarose gel

- Agarose gel showing ~1500 bp PCR product from the bacterial 16S rRNA gene.
- The first two lanes (labeled '+') are PCR products from two bacterial isolates.
- The third lane (labeled '-') is the negative control.
- The fourth lane (labeled 'MWIII') is the molecular weight marker.

Moran,2010

Steps of sequence analysis 3. Take your PCR product for sequencing

- When you have a PCR product of the appropriate size and concentration, take the product for DNA sequencing.
- Choose your isolate with the best PCR product (i.e., strongest band) to continue working with.
- Fill out the "DNA Sequence Request Form" (provided in the laboratory handout) with the required information and send it with your sample.
- To keep rest of your PCR product cold during transport, put the tube in a plastic cup filled with ice.
- In approximately 1 week, DNA sequence result will received by email.
- Save a copy of the sequence in a text file on a floppy disk or save the e-mail so you can access the file from another computer.

Steps of sequence analysis 4. Fill out the DNA sequence request form

engencore Submit by Email Print Form
at the University of South Carolina DNA Sequencing Request Form
Please fill out this form and send with your sample
Your information:
Name: Name of Institution: Collaborating Pls: Address: Phone: City, State: E-mail: Postal Code:
Your sample information:
Sample type (double stranded DNA). Check applicable box: Genomic DNA Cosmid/Fosmid BAC PCR/Amplicon Other: cDNA (bacterial) & protocolor provider cDNA (eukaryotic) & protocol or provider used: used: used: Note: If you are using another facility to prepare your cDNA, have the samples shipped from that facility directly to EnGenCore.
If you are sending 19mer Adapted PCR amplicons:
Please indicate which primers you are using: old FLX primer sets: i.e. Roche Adaptor A: 5'-GCCTCCCTCGCGCCATCAG-3' Titanium primer sets i.e. Roche Adaptor A: 5'-CGTATCGCCTCCCTCGCGCCATCAG-3' Titanium amplicon using general library primers 5'-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3' The 454 can sequence 19mer adapted PCR amplicons from the A, B, or Both adaptors. Please choose from the following:
A 19mer ONLY Both A and B 19mer B 19mer ONLY Size in base pairs: bp Have samples been purified? Yes No
If samples have been purified, please state protocol/method used:
Source Organism (Genus and Species): Host (if any):
Sample Buffer: TTE/ TH-O/ TQiagen EB TOther

966

Steps of sequence analysis 4. Fill out the DNA sequence request form

Shipping Instructions

DNA Quality: DNA should be purified by column or gel purification protocols. Samples providing A260/A280 of ~1.8 normally provide optimal results.

A number of commercially available kits will yield DNA of sufficient quality and purity for sequencing. One µL of each DNA sample should be subjected to electrophoresis on a 2% agarose gel to evaluate for concentration and quality. A hardcopy image of the EtBr-stained gel should be included with the sample(s). Please include a 1 kb ladder as a reference and clearly identify the contents of each lane.

DNA Quantity: For genomic sequencing projects, a minimum of 500 ng of DNA per Pico Green (or other fluorometric methods) provided at a concentration of ≥30 ng/µL is normally adequate. For a Titanium chemistry run, a minimum of 500 ng of DNA is required. For sequencing projects where the PI uses the Roche Rapid Library Preparation protocol to prepare the library, please send 50 microliters as per the Roche protocol.

Sample Submissions:

Samples can be provided in sterile water or TE buffer 50ng/µL (no more than 100 µL). Individual samples should be provided in a 1.5 mL microfuge tube properly labeled.

2. Preparation of microfuge sample tubes for shipping. Place up to six tubes inside of a 50 mL centrifuge tube. Secure the microfuge sample tubes by packing the tube with a paper towel or tissue paper.

Shipping:

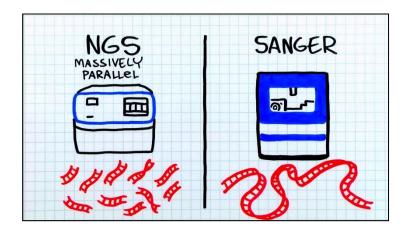
Samples should be frozen and shipped on dry ice. We recommend placing the 50 mL tube(s) inside of a plastic bag prior to placing on dry ice. Samples should be shipped via an express (next day) shipping carrier to:

Environmental Genomics Core Facility 921 Assembly Street Public Health Research Building, Room 413 Columbia, SC 29208 803-777-4338/3999 Attn: Toni Hammond

Please notify us by email of your tracking number! It has been our experience that FedEx is more reliable than UPS for shipping samples to us.

Steps of sequence analysis 5. Quality of PCR product for direct sequencing

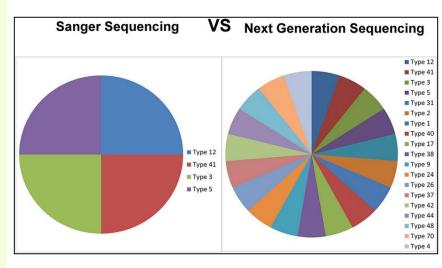
- Sequencing includes all kinds of cloned DNAs (plasmids, cosmid, phages, BACs) as well as PCR-products.
- Direct PCR product sequencing means using the PCR product as a template for the sequencing reaction without first cloning it into a vector.
- There is no universal rule that will determine what is the "best" approach.
- However, below are some points to consider if you intend to try it:
- 1. One really needs a very clean PCR product that contains a single amplified product.
- 2. The product should be at least 200-300 bp in size.
- 3. The PCR reaction should give a high yield of product.
- Should your PCR product not meet the above requirements (either before or after purification), then direct sequencing is not likely to be very successful.


Steps of sequence analysis 6. Lists of sequencing service providers

- There are numerous popular DNA sequencing service providers all around the world.
- Examples:
- Agencourt Bisosciences (USA)
- Biofidal (France)
- Cybergene (Sweden)
- Macrogen (Korea)
- Hokkaido System Science (Japan)
- First BASE Laboratories (Malaysia)
- AgGenomics (Australia)
- Inqaba Biotec (South Africa)
- DNAmind (United Kingdom)
- Genoma Sequencing (Italy)
- GATC Biotech (Germany)

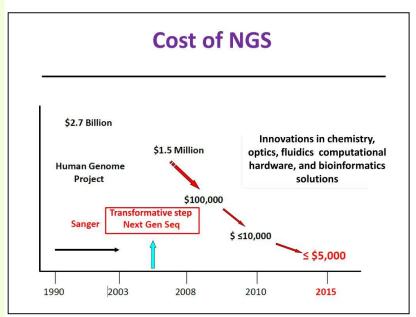
Two most popular methods of DNA sequencing

Sanger sequencing method vs. Next-generation sequencing (NGS)


- The biggest difference between the two is sequencing volume.
- 1. NGS, allows millions of fragments to be sequenced in a single run.
- 2. Sanger sequencing can only sequence one fragment at a time.

Two most popular methods of DNA sequencing

Sanger sequencing method vs. Next-generation sequencing (NGS)

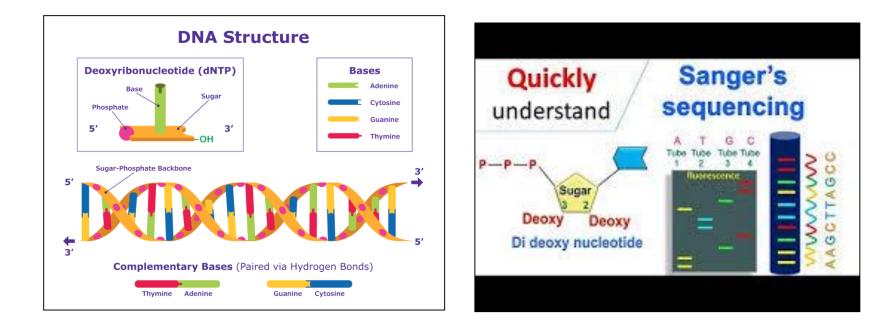

- Next-generation sequencing (NGS) is the newer gene sequencing technology that rapidly performs sequencing from abundant small fragments of DNA.
- NGS results revealed a marked HAdV diversity with 16 additional types detected beyond the four types found by Sanger sequencing.

Two most popular methods of DNA sequencing

Cost for metagenomic library, and cost for metagenomic analysis

- If you meant library, a gross estimate would be about \$50-\$100 per sample if you do the DNA isolations yourself.
- If you can select or enrich for bacteria that might help, but most likely you'll need to do some sequencing runs to get empirical data on the number/amount of bacteria, and then determine how much coverage you'll need when using only the bacterial data from your mixed samples (i.e. throwing out the Euk data).
- The cost of sequencing those libraries varies a lot, but another gross estimate is \$15 to \$35 per billion-base-pairs.
- Once you have an estimate of bacteria present, and coverage needed, then figure the bp needed per experiment, and pick a sequencer that can fit your samples together if possible, to minimize technical variability.

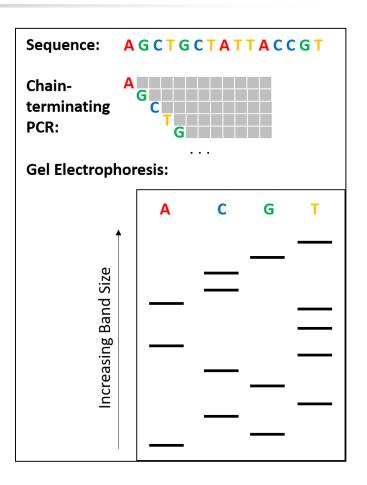
Gibson; Hoyt,2018


Nucleotides (dNTP) are modified (dideoxynucleotides = ddNTP)

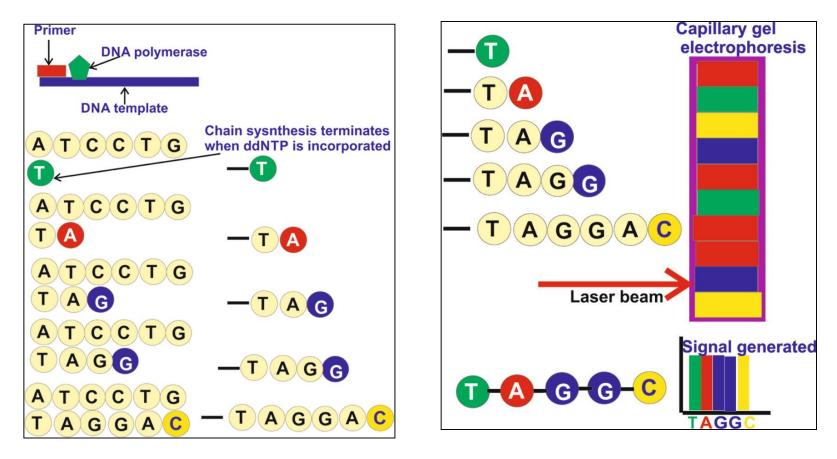
NO polymerisation after a dideoxynucleotide!

Fragments of DNA differing only by one nucleotide are generated

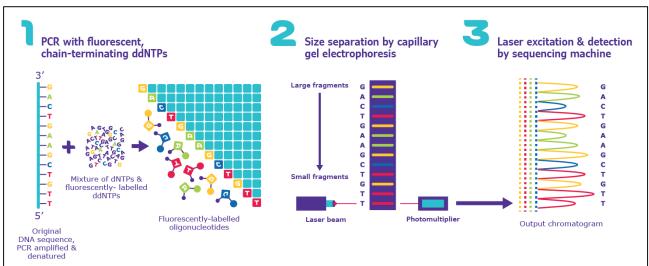
Ayaz Najafov

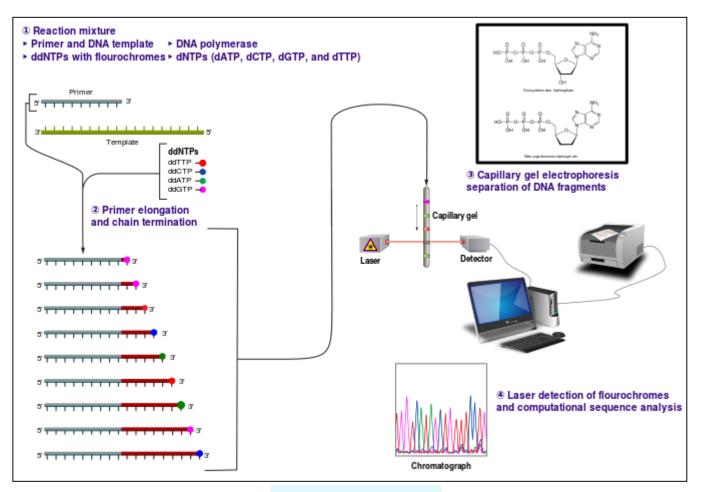

Dideoxynucleotides (ddNTPs) are chain-elongating inhibitors of DNA polymerase, used in the Sanger method for DNA sequencing.

- Purified PCR products were used as templates and sent to the Bioneer Company, Korea for nucleotide sequence determination.
- The PCR products were directly sequenced using the forward and reverse primers used for the amplification step.
- PCR products were sequenced using the Sanger sequencing method by ABI3730XL sequence analyzer.
- Sanger sequencing is a method of DNA sequencing based on the selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication (outside a cell).

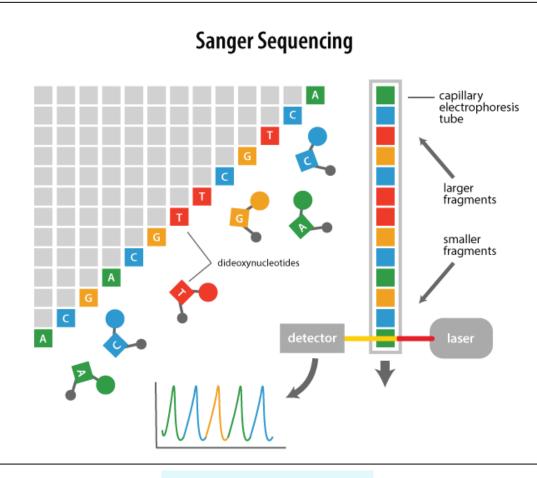

- 1. A primer is annealed to a sequence,
- 2. Reagents are added to the primer and template, including: DNA polymerase, dNTPs, and a small amount of all four dideoxynucleotides (ddNTPs) labeled with fluorophores.
- 3. During primer elongation, the random insertion of a ddNTP instead of a dNTP terminates synthesis of the chain because DNA polymerase cannot react with the missing hydroxyl This produces all possible lengths of chains.
- 4. The products are separated on a single lane capillary gel, where the resulting bands are read by a imaging system.
- 5. The DNA sequence is read through the fluorescent emission of the di-deoxynucleotide as it flows through the gel.

Steps of sequence analysis Sanger sequencing method Early termination of sequencing reactions during PCR


- Mixing dNTPS with ddNTPs causes random early termination of sequencing reactions during PCR.
- Four reactions are run, each with the chain-terminating version of only one base (A, T, G or C).
- When visualized with gel electrophoresis, one reaction per lane, the fragments are sorted by length, allowing the DNA sequence to be read off base by base.

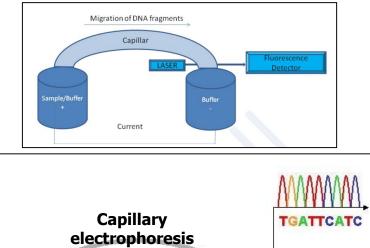


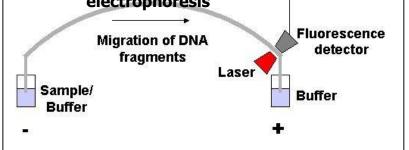
Steps of sequence analysis Sanger sequencing method Early termination of sequencing reactions during PCR



- Sanger sequencing can be performed manually or, more commonly, in an automated fashion via sequencing machine.
- Each method follows three basic steps, as described below:
- 1. DNA Sequence For Chain Termination PCR
- 2. Size Separation by Gel Electrophoresis
- 3. Gel Analysis & Determination of DNA Sequence.

Wikipedia,2016

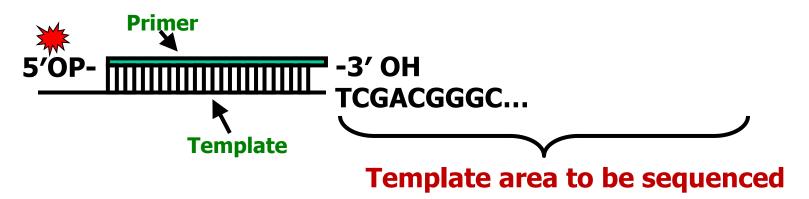



www.abmgood.com

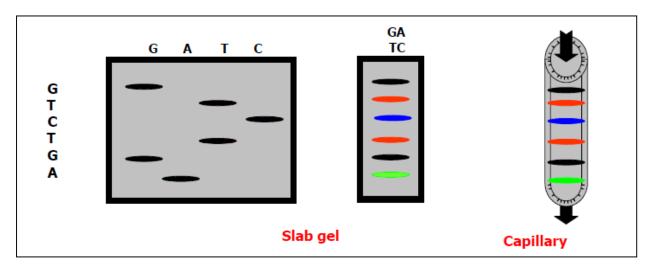
Steps of sequence analysis 7. DNA-sequencers Different sequencing methods

- Genetic information is stored in the order or sequence of nucleotides in DNA.
- The fluorescent dye-terminator cycle sequencing method (Chain termination sequencing or Dye Terminator Sequencing) is the standard method for the determination of nucleotide sequence.
- Alternatives to Dye Terminator Sequencing are:
- 1. Pyrosequencing;
- 2. Microarray sequencing: aka sequencing by hybridization;
- 3. Nanopore sequencing.

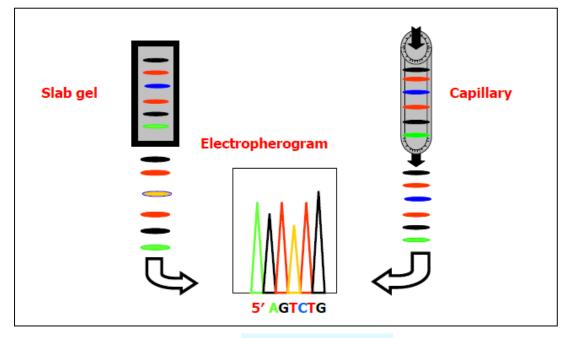

 DNA sequencers carry out capillary electrophoresis for size separation, detection and recording of dye fluorescence, and data output as fluorescent peak trace chromatograms.


A chromatogram (electrogram, sometimes also called electropherogram) is the visual representation of a DNA sample produced by a sequencing machine.

- DNA fragments are labelled with fluorescent tag on
- The primer (1),
- In the new DNA strand with a labeled dNTP, or
- With a labeled ddNTP (whenever a ddNTP was added, the elongation stopped).

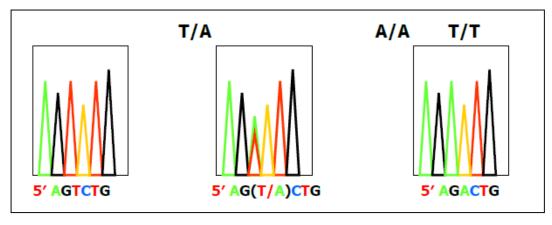

Deoxynucleotide triphosphates (dNTPs) are the essential building blocks of nucleic acid molecules, and as such are necessary components of PCR mixes as no new (amplified) DNA could be generated without them. Four Deoxynucleotides (dNTPs) are: dATP, dCTP, dGTP, and dTTP.

 A sequencing reaction mix includes labeled primer and template (primer and terminator sequencing are labelled with fluorescent dyes).



 Dideoxynucleotides (ddNTPs) are added separately to each of the four tubes. Each of four dideoxynucleotide chain terminators emit light at different wavelengths.

- Dye primer or dye terminator sequencing on capillary instruments.
- The DNA ladder is resolved in one gel lane or in a capillary.



- The DNA ladder is read on an electropherogram.
- Base sequence: adenine (A, green), thymine (T, red), cytosine (C, orange), and guanine (G, blue).

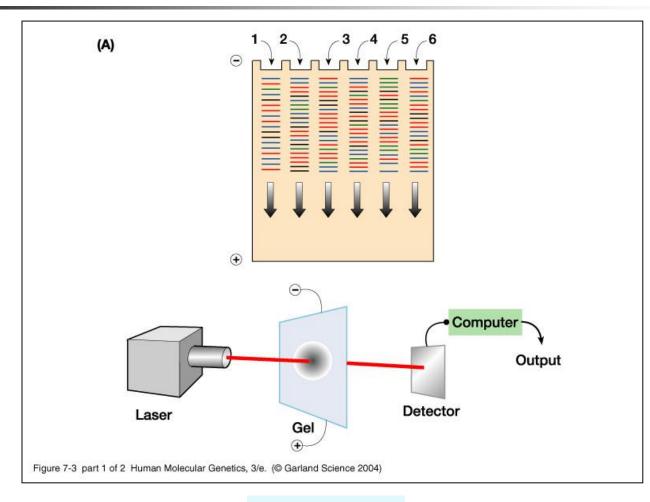
Rushids,2011

- Sequence analysis software provides analyzed sequence:
- 1. In text, and
- 2. Electropherogram form.
- Peak patterns reflect mutations or sequence changes.

Steps of sequence analysis Sequence Report

Nucleotide sequences and electropherogram of 16SrRNA

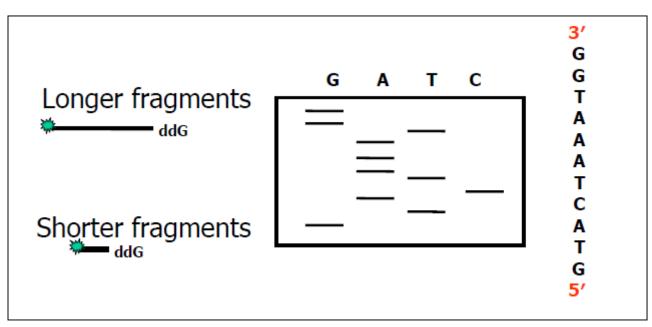
Sequence analysis software provides analyzed sequence: In text (.txt), and **Electropherogram form** (in .ab1 or .scf format). The raw output of a sequencing machines is known as a trace. If the software cannot determine which nucleotide is in a particular position it will assign the letter N to the unknown base.


Inline Attachment Follows: 107-pA.txt >100813-42 M13 107-pA.ab1 950 CNNNNNNCTATACATGCAGTCCCGAGCGAACTGAAGCEAGCTTGCTCCC CTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCT GTAA GACTERICATA ACTÉCICIOGA A ACCEGACE TA ATACERICATACT TECTUTE CEDE ATGAGAC AAGAAGGAAAGAC GOTTTEEGETGTC ACTTATAGATGGA CEEGEGGEGE ATTAGETAGT TEGTEAGETAAC COETE ACE AAGEEGAC GA ECOTAGECGACCTOROROGOTGATEGGCCACACTOGGACTGAGACACGG CEE AGACTECTACOGORGOCAGCAGCAGTACOGAATCTTCCGCAATGGACGAA AGTETGACGGAGCRACECCECGTGAACGATGAAGGTETTEGGATEGTAAA GETCTOTTOTTAGGGAAGAACAAGTGCCAGAGTAACTGCTGGCACCTTGA CEGENCETANCE AGAA AGGE AGEGETANETACOTOGE AGE AGGEGEGOTA AT ACGTAGETOGCA ACCUTTOTCCGGA ATTATTGGECGTA A AGGGCTCGC ACOTOCITTETTA ACTETCA TOTCA A ACECCECCOC TEXACCOCCEACOG EATTGGAAACTGGGAAACTTGAGTGCAGAAGAGGAGTGGAATTCCAC CTOTAGE CETGA A A TOE OTAGA GA TOTOGA GGAAC ACE ACTORE GA ACCE GACTETETEGTETETAXCTEACACTERCEACACACEGTEGEGEAGEAAA CAGGATTAGATACCETGGTAGTECACCECGTAACGATGAGTGCTAAGTGT TAGAGGGGITTECCCCCTTAGTGCTGCAGCTAACGCATTAACCACTCNCC EGEGAGTACCOTCCE AGGACTGAAACTCAAGATNACGGGCCCCCACAGC CTGAGE ATGTGGTTATCGAGEACGCGAGACTACAGTCTGACATETETGAC MACRONGEN Re-Physical Revelated 21(18)(47)(2) Republic Matter Matter Reptriction Land Recepting (LIR'S - 50 Securit) 602 and Rept of 2 สมาณายาที่ 1 และสารวิจารเจล เรื่อว่า, และสี่สาวอาณิ เรเทศกลิ่งเองและสิทธิสารสมบริกาณาเร็วการกลังสรรมรูกสาวไปการสมโดย has a first a file reaction of the contract of the second second second second second second second second sec on the second strength of the second strengt A state which the state of the See all a selfer a direct were considered and the advect Some all one from the

และผู้สำนักสถายการสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครา สายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายคราม สายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายครามสายคราม

Fluorescent dye-terminator cycle sequencing method

- When you load the entire PCR reaction into one lane of a polyacrylamine gel in a special laser sequencer (for example, the ABI 377).
- The sequencer can read the different dyes as they pass the laser at the bottom of the gel.
- Because the different fragments migrate toward the positively-charged pole at different rates, the shorter fragments migrate toward the bottom of the gel faster, so you read it bottom->top (5'->3').

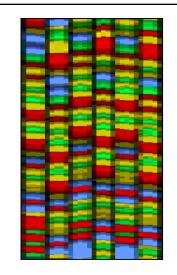

Fluorescent dye-terminator cycle sequencing method

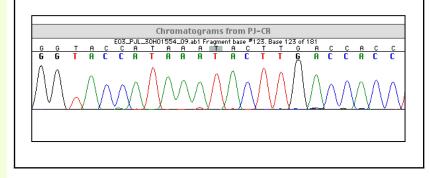
Jamison,2011

Fluorescent dye-terminator cycle sequencing method

 Sequencing gels are read from bottom to top (5' to 3').

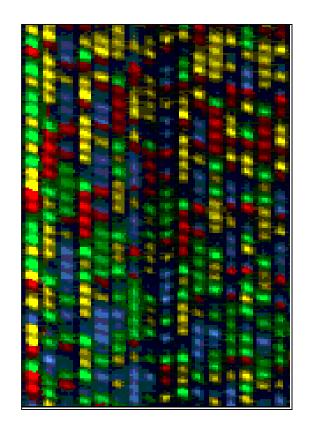
Steps of sequence analysis

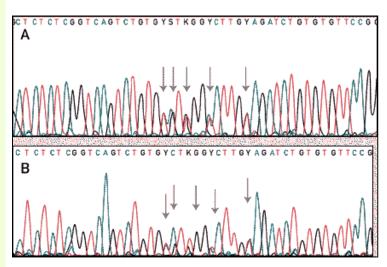

7. DNA-sequencers


Fluorescent dye-terminator cycle sequencing method

- The computer then compiles these data into the image of a gel.
- The colors are then read as bases to produce a chromatogram of the piece of DNA sequenced.
- The sequence can be taken right from the chromatogram with an extremely high level of accuracy, and the task is complete!

Fluorescent dye-terminator cycle sequencing method


- Image of a gel: Trace files (dye signals) are analyzed and bases called to create chromatograms (electrophorgram).
- 2. Chromatogram of the piece of DNA sequenced: Chromatograms from opposite strands are reconciled with software to create doublestranded sequence data.


Steps of sequence analysis DNA-sequencers Fluorescent dye-terminator cycle sequencing method

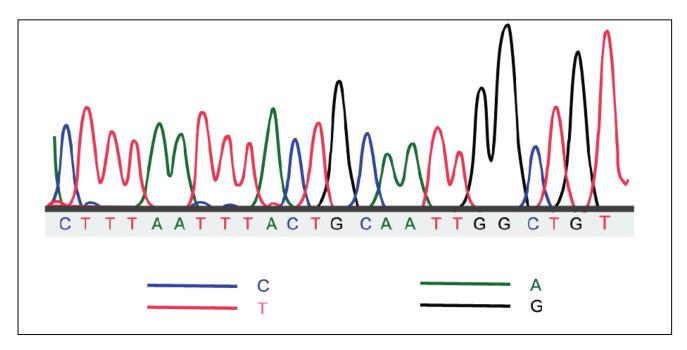
- An actual polyacrylamide sequencing gel with 16 lanes, each loaded with a different sequence sample.
- 2. Each one of the four colors represents a different base.
- 3. By translating the colors to bases, you can determine the sequence of the DNA that PCR amplified.

Steps of sequence analysis DNA-sequencers The final electrogram output of DNA

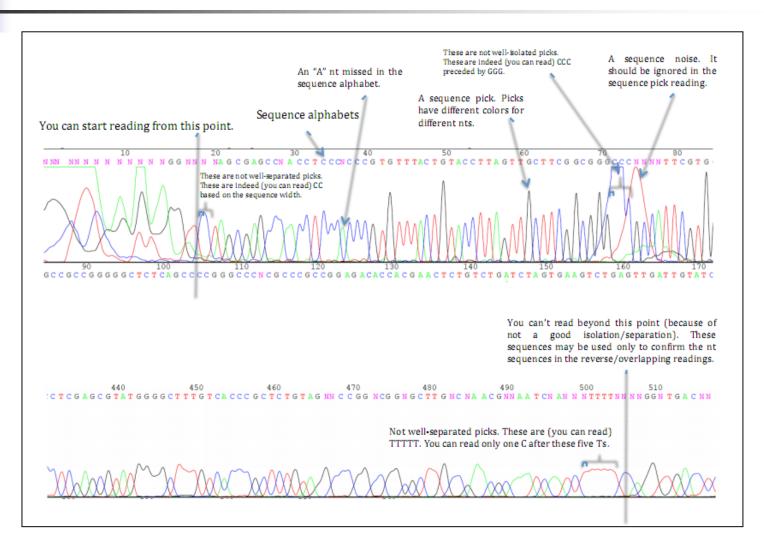
- Chromatogram of the DNA sequence.
- The computer reads the colored peaks as one of four bases, translating only at strong peaks.
- 'Y' represents a base that was ambiguous-either there were two conflicting signals or there was no signal when the computer was expecting one.
- The gray arrows show where the computer would expect to read a base.

Steps of sequence analysis Sequence Report

Register date : MAR 11th 2011 Register No. : Q20110328-15 Orderer : UPM, plant protection Name : EISA NAZERIAN

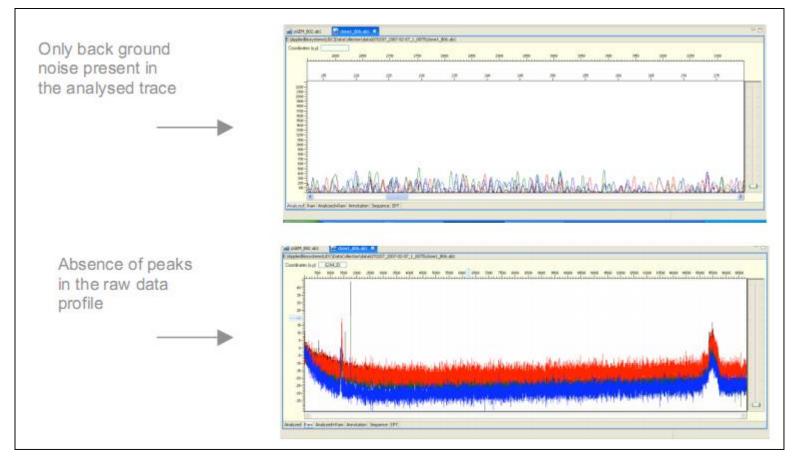

Bioneer messages for customers

Data Information						
No.	sample name	primer	Result	data group	comment	
1	1sh	F	SUCCESS			
2		R	SUCCESS			

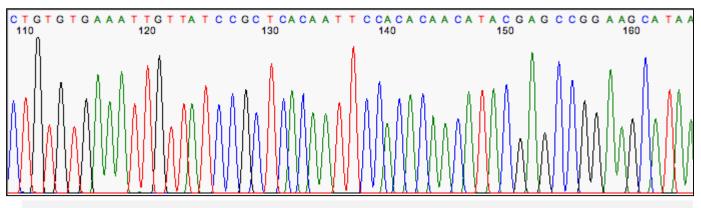

	Data group				
A	reading length is short or noisy. Re-reaction is recommended.				
В	Failed at analysing. Re-reaction is recommended.				
C	There are some problem at analysis because of template structure. Re-reaction is not recommended.				
D	Re-reaction is not recommended.				
	Re-reaction result is released after one day.				

- The electropherogram (chromatogram or electrochromatogram) is a graphical representation of data received from a sequencing machine and is also known as a trace.
- Each line represents one of the four nucleotides, and the peaks in the lines indicate the strength of the signal given off from the laser beam as it hits the DNA fragment.
- In other words, each peak corresponds to a fluorescently labeled nucleotide base, and the order of the peaks is the nucleotide sequence (because the fragments have previously been ordered by gel electrophoresis).

Note that in a real electropherogram, guanine would be represented by yellow, rather than black.


- 1. Open the .abl file by using BioEdit or Chromaslite programs (you can find both programs online, then download and install them easily).
- 2. Generate a text file from the sequence hologram (if this file is not included in the files sent by the company) by using "File Export as Text" or "Export" option of the above programs, respectively. Use this text file as a template for your reading.
- 3. Generate a PDF file from the sequence hologram (if this file is not included in the files sent by the company) and print out it in COLOR.
- 4. To start reading, first, remove the complementary nt sequences of the second amplification primer (i.e., the primer which was not used for the sequence reading) from the end of the sequence read (text file). Note: Based on the quality of the sequence reading, only some of the complementary nt sequences of the second primer may be found.
- 5. Remove all nt sequences appeared after the second primer from the text file as well.
- 6. Start reading from the upstream but please remember that reading should be started from the nt which its separation (a distinguishable pick) and isolation (an individual pick, not mixed picks) is suitable.
- Note: You should read each sequence three times. The first time is done based on the alphabets appeared above the sequence hologram. The second and the third (final) readings will be performed on the basis of "the colored picks. After finishing each round of reading, the template text file (e.g., 38-S6-R1-ITS1) should be saved as 38-S6-R1-ITS1-1st read,2nd read, and3rd read.
- Note: At the first and the end of a sequence reading, you can find many non-well isolated/separated picks, most of them may be clarified in the reverse reading (by a second primer).
- Some other general notes: please see the next page pictures carefully.

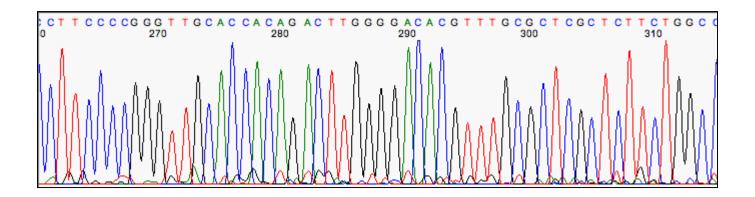
Raw and analyzed DNA sequence data (trace)


- Unfortunately, electropherograms are not always as high quality.
- The incoming signals may not be as strong and evenly spaced out.
- However, with the help of other computer programs and a finisher, the sequence often can be determined, even if the electropherogram isn't entirely clear.
- A finisher is someone whose job it is to analyze the raw sequence data presented by an electropherogram and create a high quality sequence by editing and calling for additional reactions to gather better data where needed.

Raw and analyzed DNA sequence data (trace)

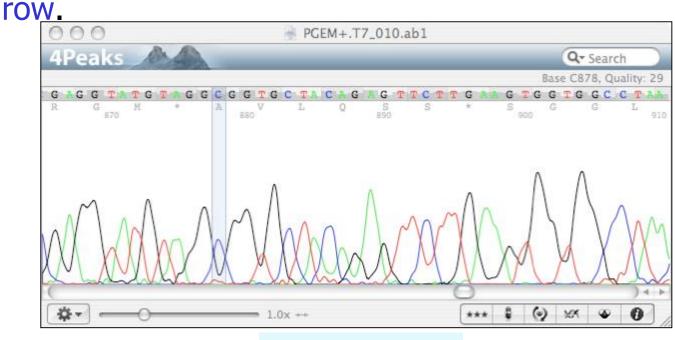
No baseline noise (Good quality sequence)

- Here's an example of excellent sequence.
- Note the evenly-spaced peaks and the lack of baseline 'noise' (see further down for examples of higher baseline noise):



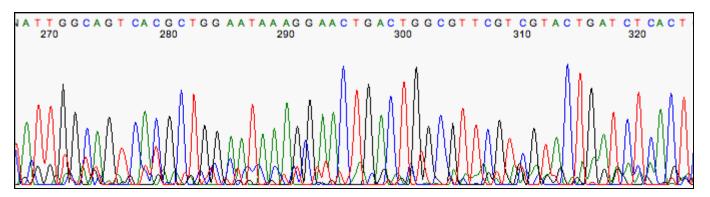
Notice how well defined and sharp the peaks are, with nice even spacing between them. Peak height is also significantly higher than the earliest fragments.

Michigan univ.DNA Sequencing Core


Steps of sequence analysis Interpretation of sequencing chromatograms A little baseline noise

The next example has a little baseline noise, but the 'real' peaks are still easy to call, so there's no problem with this sample:

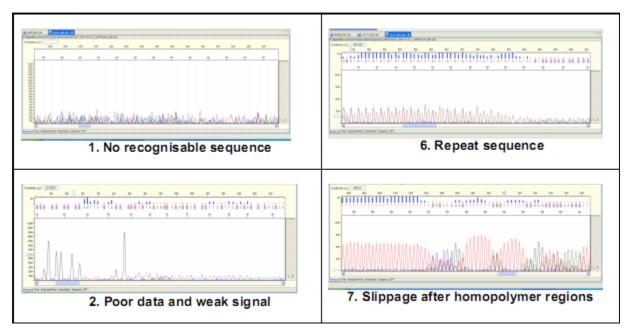
Steps of sequence analysis Interpretation of sequencing chromatograms A little baseline noise


The peaks are no longer sharp but have become broad and more rounded in shape, especially where you have more than one of the same nucleotide in a

Steps of sequence analysis

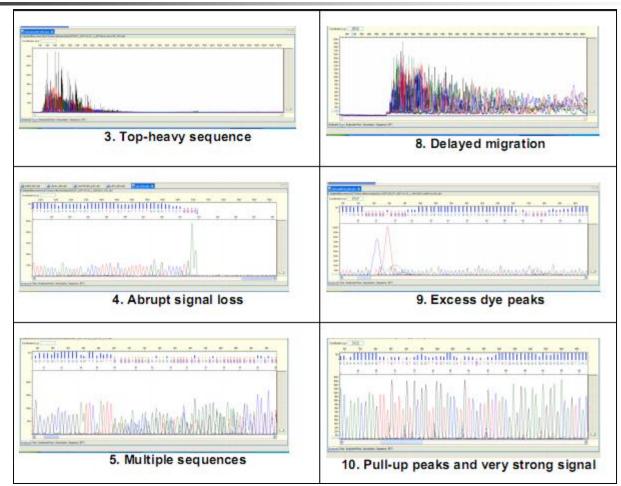
Interpretation of sequencing chromatograms A bit too much baseline noise

- Now we get to an example that has a bit too much noise.
 Note the:
- 1. Multicolored peaks at 271, 273 and 279,
- 2. The oddly-spaced interstitial peaks near 291, and 301,
- 3. And it is impossible to determine the real nucleotide is at 310.



Michigan univ.DNA Sequencing Core

Steps of sequence analysis

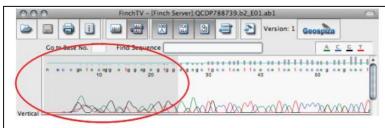

Interpretation of sequencing chromatograms Trouble-shooting of the sequence data

 When evaluating or trouble-shooting sequence data, it is important to look at the raw and analysed data traces in addition to data values (signal strength and start/end points) displayed in the annotation file.

Vasic,2011

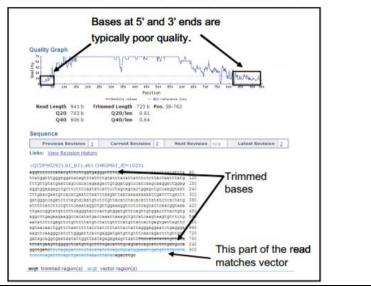
Steps of sequence analysis Interpretation of sequencing chromatograms Trouble-shooting of the sequence data

Steps of sequence analysis Interpretation of sequencing chromatograms


Trouble-shooting of the sequence data

- A number of commercial and non-commercial software packages can trim low-quality DNA traces automatically.
- These DNA sequence assembly programs such as DNASTAR's SeqMan Ngen software score the quality of each peak and remove low-quality base peaks (generally located at the ends of the sequence).

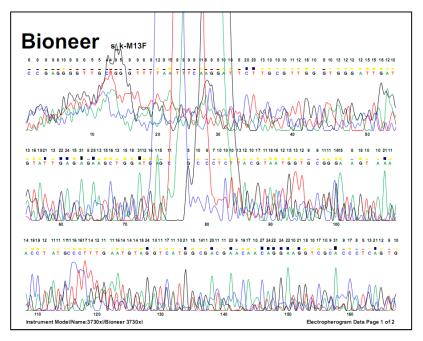
SeqMan is a sequence assembly tool that lets you assemble anything from two sequences to tens of thousands of sequences into contigs. DNASTAR software (Lasergene) first gained popularity in the 1980s and 1990s for its sequence assembly and analysis capabilities of Sanger sequencing assembly data. Lasergene 15.3 was released in 2018.


Steps of sequence analysis Interpretation of sequencing chromatograms Trouble-shooting of the sequence data

- Quality trimming: The sequence of bases from each chromatogram is called a read.
- Low quality bases at the beginning of the sequence were trimmed and are shown as having gray shading over them.
- Since the data at the 5'- and 3'-ends of reads are often of poor quality, a standard step in DNA sequencing is quality trimming.
- In this process, a program examines the quality of each base at either end of the read.
- In FinchTV, the trimmed regions are indicated by a gray shadow.

Example of trimmed region (shaded gray) of low quality bases as the start of a sequence.

In the iFinch for Educators chromatogram report (below), the quality value for each base is shown in a graph. Trimmed bases in the sequence have a strikethrough.

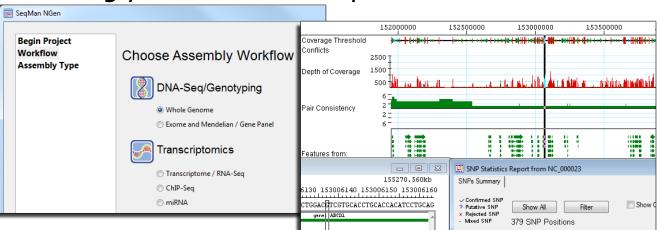


Sequence Report

Nucleotide sequences and Electropherogram Failed at analysing. Re-reaction is recommended

 no signal: Since primer is not binding, we recommend to do analysis using other primer as checking out.

н н - •	ਾ ਵੇ - ਕਿ -			NQIR170821-47-see	quencing report (Compati	bility Mode) - Excel		_			?
ille -	HOME INSERT PAG	SE LAYOUT FORMULAS	DATA REVIEW	VIEW ADD-INS							
te Ph (jobh - Alfand	• 40 • A A =	= = ≫- ⊨ = = = =	 Wrap Text Merge & Center 	General * \$ - % + 12 43	Conditional Format as Cell	Insert Delete	32	∑ AutoSum · III ·· Clear ··		
Clipb	oard 6	Font G	Align	mont	5 Number 6	Styles	Cells		Ec		
	• : × ~ fr	Bioneer									
Α	В	С	D	E		F	G	н	1.1	J	K
			Bio	neer							
			Sequenc	ing Report							
Deniel	and the call of the of	17									
Order	er : Takapou Zist LTd	Sequencing									
Name	: T960512-32										
			Bioneer messa	ges for customers							
			Data In	nformation							
		primer	Result	data group		omment					
No.	sample name	M13E	NOT GOOD			not binding, we recommend					
	Regist Order	LE HOME PASERT PAA b Copy → Copton Painter II / U Copton c - × ↓ ↓ Register date : AUG 21th 2; Register date : AUG 21th 2; Register No.: NQIRI70821:	IDE IDE <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Image: Terminal status Data Data</td> <td>Image: Terminal State A State Data EVEW AUX AD-NOS Construction If E = M + A A Image: E = M + N + M + A A Image: E = M + N + M + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A A Image: E = M + M + A A A Image: E = M + M + A A A Image: E = M + M + A A A Image: E = M + M + A A A A A A A A A A A A A A A A</td> <td>Territor Restrit PACLANOUT COMMUNS DATA REVEW VARVA ACO-RS X Cons Con</td> <td>Image: Terrar PACLANOUT COMMANS DATA REVEW VEW ADD-RS Construction Image: Reversion Construction Image: Reversion Construction Image: Reversion Procession Image: Reversion Procession Image: Reversion Procession Image: Reversion Image: Reversion Image: Reversion Image: Reversion Image: Reversion Image: Reversion Image: Reversion Register date: AUG 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Revencing Revencing Revencing Nume: Tegosizer 242 Rulo 23th 2017</td> <td>Image: Transmission of the second second</td> <td>Image: Terminal State Sta</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: Terminal status Data Data	Image: Terminal State A State Data EVEW AUX AD-NOS Construction If E = M + A A Image: E = M + N + M + A A Image: E = M + N + M + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + N + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A Image: E = M + M + A A A Image: E = M + M + A A A Image: E = M + M + A A A Image: E = M + M + A A A Image: E = M + M + A A A A A A A A A A A A A A A A	Territor Restrit PACLANOUT COMMUNS DATA REVEW VARVA ACO-RS X Cons Con	Image: Terrar PACLANOUT COMMANS DATA REVEW VEW ADD-RS Construction Image: Reversion Construction Image: Reversion Construction Image: Reversion Procession Image: Reversion Procession Image: Reversion Procession Image: Reversion Image: Reversion Image: Reversion Image: Reversion Image: Reversion Image: Reversion Image: Reversion Register date: AUG 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Register date: Rulo 23th 2017 Revencing Revencing Revencing Nume: Tegosizer 242 Rulo 23th 2017	Image: Transmission of the second	Image: Terminal State Sta


Interpretation of sequencing chromatograms What is DNAstar Lasergene?

- DNAstar Lasergene is a suite of 7 programs:
- 1. SeqBuilder for sequence editing and annotation, automated virtual cloning, and primer design;
- 2. SeqMan Pro- for contig assembly and analysis including SNP discovery, coverage evaluation, and project annotation.
- 3. MegAlign for DNA and protein sequence alignments and analysis;
- 4. GeneQuest for gene discovery and annotation;
- 5. **Protean** for protein structure analysis and prediction;
- 6. **PrimerSelect** for primer design;
- 7. EditSeq for importing and editing unusual file types.

Note: SeqMan Pro analyzes the shape and intensity of peaks found in trace data to calculate quality scores, Q, and averaged quality scores, Q/n. A sequence contig is a contiguous, overlapping sequence read resulting from the reassembly of the small DNA fragments generated by bottom-up sequencing strategies. Single nucleotide polymorphisms (SNPs) is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species.

Steps of sequence analysis Interpretation of sequencing chromatograms SeqMan NGen is fully integrated with SeqMan Pro

- SeqMan Pro is a great application for identifying gene mutations/ polymorphisms.
- SeqMan NGen is fully integrated with SeqMan Pro, so that once your assembly is complete, you can continue with downstream analysis including discovering SNPs and small indels, identifying large insertions and deletions, evaluating coverage, and annotating your consensus sequence.

Lasergene Tutorial BE Bootcamp 2010

Interpretation of sequencing chromatograms Reasons for trouble-shooting of the sequence data

- 1. No recognisable sequence
- 2. Poor data and weak signal
- 3. Top-heavy sequence

Sequence Problems

Below the automatic alignment, the Registry software will display Sequence Problems, specific nucleotide discrepancies between the reads and their target part.

Part	204	cacatac <mark>t</mark> agagaaa
20982	265	cacatac <mark>c</mark> agagaaa
20914	145	cacatac <mark>c</mark> agagaaa

The nucleotide in question is colored red, and its locations on the documented sequence of the part, and the two reads are noted.

Reasons for trouble-shooting of the sequence data 1. No recognisable sequence

- No analysed data is present because the signal-to-noise level is below the threshold for bases to be called.
- Failed reactions are characterised by:
- 1. The absence of clearly defined peaks in the raw data trace
- 2. The absence of base calls in the analysed electropherogram
- 3. Very low signal-to-noise ratios S/N G:<25 A:<25 T:<25 C:<25
- The cause of a failed reaction may be due to:
- 1. Insufficient or poor quality template and/or primer
- 2. Absence of primer annealing site or mutation in primer binding site
- 3. Failed sequencing reaction or clean-up.
- Recommended actions include:
- 1. Check template and/or primer concentrations and quality
- 2. Check primer binding site and primer design
- 3. Check ethanol concentrations and centrifugation speed and times

Reasons for trouble-shooting of the sequence data 2. poor data and weak signal

- Poor data, weak signal and the presence of dye blobs are often a result of low template concentration.
- Reactions displaying low signal strength are characterised by:
- 1. Very low peak height in the raw data trace and the presence of dye blobs
- 2. In the analysed electropherogram, base calls fade off before the end of the read
- 3. Very low signal-to-noise ratios S/N G:<50 A:<50 T:<50 C:<50
- Low signal strength may be the result of:
- 1. Insufficient or poor quality template and/or primer
- 2. Poor primer design (low Tm) or mutation in primer binding site
- 3. Inferior reagents used or poor clean-up
- Recommended actions include:
- 1. Check template and/or primer concentrations and quality
- 2. Check primer binding site and primer design
- 3. Check sequencing reagents and clean-up protocol

Steps of sequence analysis Trouble-shooting of the sequence data **3.** Top-heavy sequence

- Sample set up with too much template. Template and primers are exhausted at the beginning of cycle sequencing creating an excess of short fragments
- Reactions displaying top-heavy sequence are characterised by:
- 1. Very high peaks in the raw data trace that fade off abruptly
- 2. In the analysed electropherogram, base calls fade off before the end of the read
- 3. An excess of short fragments are generated that are preferentially injected into the capillary
- Top-heavy sequence may be the result of:
- 1. Too much template used in the sequencing reaction
- 2. Too much primer used in the sequencing reaction
- Recommended actions include:
- 1. Check template concentration.
- 2. Check primer concentration. Use 3.2 pmol

Steps of sequence analysis Reasons for trouble-shooting of the sequence data **4. Abrupt signal loss**

- Abrupt signal loss is due to the presence of secondary structure.
- Abrupt signal loss is often characterised by:
- 1. Very high peaks in the raw data trace that stop abruptly
- 2. In the analysed electropherogram, base calls suddenly stop before the end of the read
- Abrupt signal loss may be the result of:
- 1. Secondary structure in the template
- 2. High GC content
- 3. Primer dimer contamination
- Recommended actions include:
- 1. Sequence complementary strand
- 2. Use a primer that anneals at a different position
- 3. Incubate the reaction at 96 degrees C for 10 minutes before cycling
- 4. Increase the extension temperature by 2 to 3 degrees C
- 5. Increase denaturation temperature to 98 degrees C
- 6. Add DMSO to a final concentration of 5%
- 7. Double all reaction components and incubate at 98 degrees for 10 minutes before cycling
- 8. Linearise the DNA with a restriction enzyme
- 9. Shear the insert into smaller fragments (<200bp) and subclone
- 10. Redesign primer to avoid primer dimer formation

Steps of sequence analysis Reasons for trouble-shooting of the sequence data **5. Multiple sequences**

- The presence of more than one PCR template in a reaction will result in overlapping sequences being generated.
- Reactions displaying multiple sequences are characterized by:
- 1. Lower peaks in the raw data trace
- 2. More than one sequence trace in the analysed data trace
- 3. More than one sequence commencing after base 50 to 100 (MCS)
- Multiple sequences may be the result of:
- 1. Mixed plasmid preparation
- 2. Multiple PCR products
- 3. Frame shift mutation
- 4. Primer-dimer contamination
- 5. Multiple priming sites
- 6. Multiple primers in reaction
- 7. Primer with N-1 contamination
- 8. Slippage after homopolymer or repeat regions in the template
- Recommended actions include:
- 1. Re-isolate the DNA from a pure colony and re-sequence
- 2. Check PCR template on gel for single band
- 3. Use a different primer after the mutation or sequence the complementary strand
- 4. Optimise PCR amplification or redesign primer
- 5. Make sure primer only has one priming site
- 6. Ensure only one primer has been used

Reasons for trouble-shooting of the sequence data 6. Repeat sequences

- Signal loss is due to the presence of a repetitive sequence.
- Reactions displaying repeat sequences are characterised by:
- 1. The gradual decrease of peak height in the raw data trace after the repeat region.
- 2. In the analysed electropherogram, base calls fade off after the repeat region.
- Recommended actions include:
- 1. Sequence the complementary strand.
- 2. Use a primer that anneals at a different position.

Steps of sequence analysis Reasons for trouble-shooting of the sequence data

7. Homopolymer regions

- Long homopolymer T regions (or A regions) can cause problems due to enzyme slippage.
- Sequence data containing homopolymer regions display:
- 1. Overlapping sequence following a homopolymer region due to slippage of the enzyme.
- Recommended actions include:
- 1. Sequence the complementary strand.
- 2. Use a primer that anneals at a different position.
- 3. Use an anchored primer (i.e., a sequencing primer that is polyT containing a A, C, or G base at the 3' end of a poly A region).
- 4. The 3' base will anchor the primer into place at the end of the homopolymer region.

Steps of sequence analysis Reasons for trouble-shooting of the sequence data 8. Delayed migration

- Delayed samples often result from an excess of salt in the sample.
- Sequence data displaying delayed migration show:
- 1. Peaks commence after the usual start point of 600 to 800 in the raw data trace.
- 2. Peaks are not evenly spaced in the raw and analysed traces.
- 3. Poor base calls in the analysd electropherogram.
- Delayed migration may be the result of:
- 1. Contaminating negative ions (salts or other contaminants) in the sample being preferentially injected to the labeled fragments
- 2. Heavily overloaded samples. Excess of template used during sequencing.
- Recommended actions include:
- 1. Diluting the sample in deionized formamide and rerunning the sample can often correct this problem and yield good data.

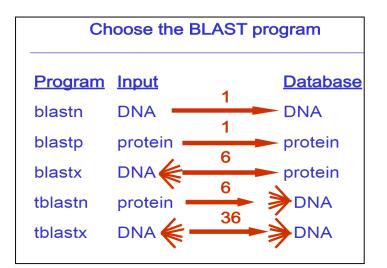
Reasons for trouble-shooting of the sequence data 9. Excess dye peaks at beginning of sequence

- Incomplete removal of excess dyes during the post cycle sequencing cleanup can obscure data at the beginning of the sequence.
- Sequence data displaying excess dye peaks have:
- 1. Peaks of excess dye present in the raw data trace
- 2. Dye blobs in the analysed data trace at positions 80, 120 and 190
- 3. Low signal to noise ratios S/N G:<50 A:<50 T:<50 C:<50
- The presence of dye blobs in the data may be the result of:
- 1. Incorrect estimation of template concentration (i.e. insufficient used)
- 2. Poor removal of unincorporated dye terminators
- Recommended actions include:
- 1. Check template concentration by agarose gel
- 2. Use fresh ethanol and sodium acetate (at room temp.) and use correct concentrations
- 3. With microfuge tubes, aspirate the supernatant rather than decanting
- 4. Do not use denatured alcohol
- 5. Do not leave reactions precipitating over night

Reasons for trouble-shooting of the sequence data 10. Pull-up peaks and very strong signal

- Pull-up peaks and very high signal may result from use of too much template during cycle sequencing.
- Sequence data displaying pull-up peaks are characterized by:
- 1. Very high peaks in the raw data trace
- 2. very high peaks in the analysed data trace with pull up peaks and poor base calls
- 3. very high signal to noise ratios S/N G:>750 A:>750 T:>750 C:>750
- Pull-up peaks may be the result of:
- 1. Incorrect estimation of template concentration (i.e. too much used)
- Recommended actions include:
- 1. Diluting the sample in deionised formamide and rerunning the sample can often correct this problem and yield good data
- 2. Reduce the amount of template used in sequencing.

Steps of sequence analysis BLAST search at GenBank blastn, blastp, blastx, tblastn, tblastx


 BLAST (Basic Local Alignment Search Tool) search to identify similar sequence from the database.

Step 2: Choose the BLAST program

blastn (<u>n</u>ucleotide BLAST) blastp (<u>p</u>rotein BLAST) blastx (translated BLAST) tblastn (<u>t</u>ranslated BLAST) tblastx (<u>t</u>ranslated BLAST)

Steps of sequence analysis BLAST search at GenBank blastn, blastp, blastx, tblastn, tblastx

 BLAST (Basic Local Alignment Search Tool) search to identify similar sequence from the database.

BLAST program	Query	Database
Nucleotide blast (blastn)	Nucleotide	Nucleotide
Protein blast (blastp)	Protein	Protein
blastx	Translated Nucleotide	Protein
tblastn	Protein	Translated Nucleotide
tblastx	Translated Nucleotide	Translated Nucleotide

- To explore biodiversity you will work with the 16S rRNA sequence of your bacterium using databases and programs available on the Internet.
- This exercise will tell you whether your isolate corresponds to a previously characterized species, or whether it is something new.
- If it is new, you can determine which organisms are its closest relatives, and perhaps predict some of the physiological properties of your unknown based on what is known about its relatives.

- GenBank is the National Institutes of Health (NIH) genetic sequence database, a collection of all publicly available DNA sequences.
- Scientists who determine the sequences of genes (or sometimes of entire genomes) deposit the sequence information in GenBank.
- Aside from doing this as a service to the scientific community, many journals require submission of new sequence data to GenBank as a precondition to publishing a manuscript referring to the sequence.

Note: GenBank is a comprehensive sequence database. It is advised to edit sequences prior depositing in GenBank database.

NCBI National Center for Biotechnology Information

Resources

NCBI Home

All Resources (A-Z)

Literature

DNA & RNA

Proteins

Sequence Analysis

Genes & Expression

Genomes

Maps & Markers

Domains & Structures

Genetics & Medicine

Taxonomy

Data & Software

Training & Tutorials

Homology

Welcome to NCBI

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

More about the NCBI | Mission | Organization | Research | RSS

Popular Resources

PubMed Central

PubMed

Bookshelf

BLAST

Gene

Steps of sequence analysis BLAST search at GenBank or other servers

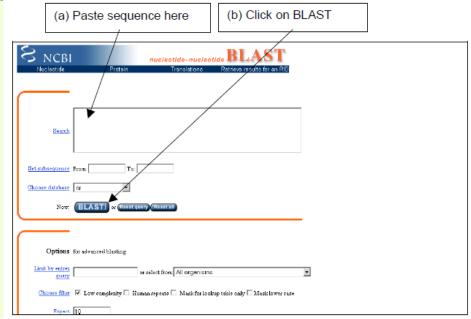
- Choose one of the public servers:
 - NCBI <u>www.ncbi.nlm.nih.gov/blast</u>
 - EBI <u>www.ebi.ac.uk/blast</u>
 - EMBNet <u>www.expasy.ch/blast</u>
- Select a database to search:
 - NR to find any protein sequence
 - Swiss-Prot to find proteins with known functions
 - PDB to find proteins with known structures
- Cut and paste your sequence
- Click the **BLAST** button

Spiegel,2007

- GenBank has approximately 13,543,000,000 bases in 12,814,000 sequence records as of August 2001, derived from viruses, bacteria, and complex eukaryotic organisms.
- Included among these many sequences are a number of 16S rRNA gene sequences from Bacteria and Archaea.
- The current number of 16S rRNA sequences is approximately 12,000.
- Some of these are 'complete' (they cover the entire 1500+ bases of the 16S rRNA gene), while other are 'partial' (like yours will be) and cover only a portion of the gene (your sequence includes only ~400 bases near the beginning of the gene).

- A sophisticated computer program called BLAST compares the query sequence you submit to all of the sequences previously deposited in the GenBank database.
- BLAST finds sequences in the database that are most similar to the submitted sequence, and then returns the names and a brief description of the matching sequences in the output from the program.

In typical usage, the query sequence is much smaller than the Refseq database, e.g., the query may be one thousand nucleotides while the database is several billion nucleotides.

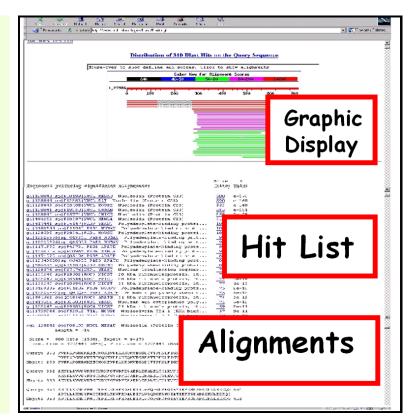

- BLAST (Basic Local Alignment Search Tool) is a tool for comparing one sequence with all the other sequences in a database.
- BLAST can compare:
 - DNA sequences
 - Protein sequences
- BLAST is more accurate for comparing protein sequences than for comparing DNA sequences.

- View of NCBI BLAST page.
- Paste your sequence into the top box labeled 'Search'.
- Start the query by clicking the 'BLAST!' button.

S NCBI Nucleotide	Protein Translations Retileve results for an	RID
<u>Search</u>		
Set subsequence	From: To:	< ▶
<u>Choose database</u>	nr 🔷	
Now:	BLAST! or Reset query Reset all	

Searching the databases with short sequences may result in an error. The minimum length is 11 bases, however the recommended minimum sequence length is 22 bases (nucleotides/blastn) or 6 amino acids (proteins/blastp). Usually short queries can match both long and short sequences, producing many answers.

- View of NCBI BLAST page.
- Paste your raw or edited sequences into the top box labeled 'Search'.
- Start the query by clicking the 'BLAST!' button.


Moran,2010;Boonham,2008

Interpreting BLAST result Reading BLAST Output

- The Graphic Summary shows alignments (as colored boxes) of database matches to our Query sequence (solid red bar under the color key).
- The query coordinates and length correspond to the numbered scale across the top.
- Sequences found by BLAST, "hits," are represented as horizontal bars below this scale.
- These will vary in length, position, and color-coded scoring.
- Generally, the higher the alignment score, the more significant the hit.
- Each line represents a hit from your blast search.

Interpreting BLAST result Reading BLAST Output

- Graphic Display
 - Overview of the alignments
- Hit List
 - Gives the score of each match
- Alignments
 - Details of each alignment

A high-scoring segment pair, or HSP, is a subsegment of a pair of sequences, either nucleotide or amino acid, that share high level of similarity. Each HSP is drawn as a line, and is aligned with the query sequence and each hit may contain one or more high scoring pairs (HSPs). Hit names and P-values are displayed at the left side of the graph.

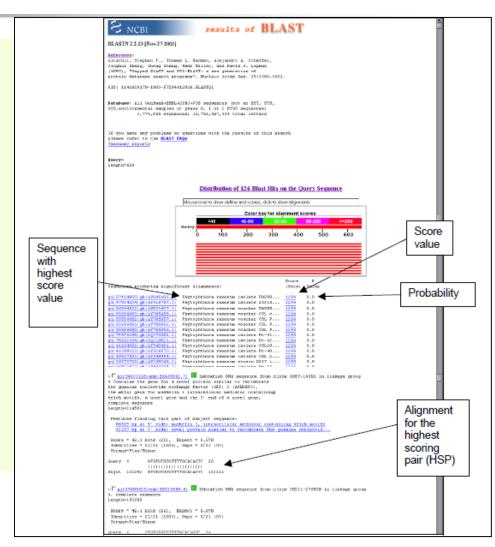
Interpreting BLAST result Reading BLAST Output Hits are Color Coded

• The hits are color coded according to their P value. A set of five fixed ranges is used to determine a color for each hit. These

ranges, from "worst" to "best" are:

1.0 to 1e-10 1e-10 to 1e-50 1e-50 to 1e-100 1e-100 to 1e-200 1e-200 to 0.0

 The key shows these colors, and notes the negative value of the exponents in each range. It progresses from "worst" on the left to "best" on the right.


Neg P Exponent: < 10 10-50 50-100 100-200 200 <

Note that ranges might not contain any hits, since the ranges are fixed while the hit P-values are not. When ranges share a boundary value (e.g.: 1e-50), that value falls in the "better" range and will be colored thus (e.g.: green).

Interpreting BLAST result Reading BLAST Output

- Graphic Display
 Overview of the alignments
 Hit List
 Gives the score of each match
- Alignments
 - Details of each alignment

Spiegel,2007;Boonham,2008

Interpreting nucleotide blast results Reading BLAST Output

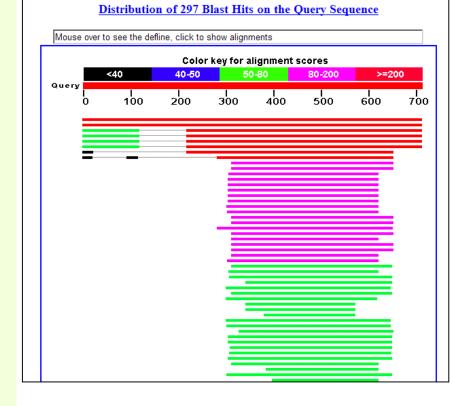
Example 2: <u>Local</u> alignment of a 300bp sequence and an internal fragment containing a single insertion and a single mismatch using BLAST

>Random seq 1

TCGAAGGCGCTCGGTAGAGTACGTGTCCCAACTGTTGCCTAAGCGCGCGTACAGTAGGGCGAGGCACGCTACTG TTACGAGATTCCTACCGAAGAAAAGTTAAGCCCCTCGAAAGGTAACCATCGGAGCCCGTGATCTGGCATGAAATA CTACGGGCCTTCCCCCAACATAAGGCAACTCATTGCGGGGGATACACATGCGACTCGGTCCGATATGATTGCCGCA TTTTCACGGTTGCCTCATCAAGCCCGCCAACGGGTTAGTGGAACGAATATGAGGCAGACTCTCACATCGCTATCT GT

Alignmer Select All	Get selected sequences
>lcl 6	
	=43 = 66.2 bits (72), Expect = 1e-16 ities = 41/43 (95%), Gaps = 1/43 (2%)
Stran	d=Plus/Plus Indel
Sbjct	163 CCCAACATAAGGCAACTCAT-GCGGGGATACACATGCGCCTCG 204 111111111111111111111111111111111111
	mismatch

Interpreting BLAST result Interpreting the score values


- The first format (under the heading "Distribution of Blast Hits on the Query Sequence") is a graphical representation of the results, showing the matches to your input sequence as a stack of colored bars with the best matches at the top.
- The color of the bar indicates the match score (i.e., degree of similarity) between your sequence and the database matches.
- Red indicates the best matches,
- Black indicates the poorest.
- The length of the bar shows the length of the sequence that was noticeably similar to the query.

Interpreting BLAST result Interpreting the score values

- As its name suggests, BLAST (Basic Local Alignment Search Tool) is designed to identify local regions of sequence similarity.
- This means that BLAST may report multiple discrete regions of sequence similarity between a query sequence and a subject sequence in a database.
- The color of the boxes corresponds to the score (S) of the alignment, with red representing the highest alignment scores.

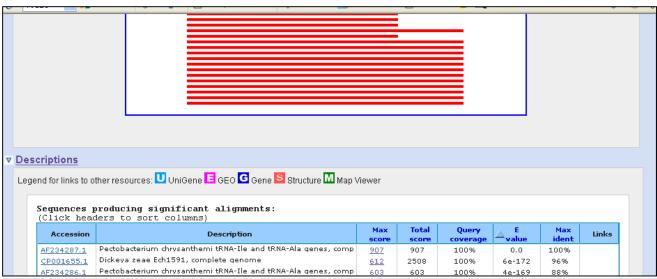
Interpreting BLAST result Reading BLAST Output The graphic display

- The Horizontal Axis (0-700) corresponds to your protein (query).
- Color codes indicate that match's quality
 - Red: very good
 - Green: acceptable
 - Black: bad
- The top two (solid red bar) hits match much better to our sequence than the remaining BLAST hits.
- Thin lines join independent matches on the same sequence.

Interpreting BLAST result The Graphic Display List of Significant BLAST Hits

- The BLAST algorithm calculates similarity scores for local alignments (i.e., the most similar regions between 2 sequences) between the query sequence and subject sequences using specific scoring matrices, and returns a table of the best matches ("hits") from the database.
- The hit table includes several useful pieces of information, including:
- 1. The similarity score, query coverage (percent of the query sequence that overlaps the subject sequence),
- 2. E-value, and
- 3. Max identity (percent similarity between the query and subject sequences over the length of the coverage area).

Interpreting BLAST result The Graphic Display List of Significant BLAST Hits


- List of blastn hits that produce significant alignments with our query sequence. Scrolling further down the output, we find a summary table that shows all the sequences in the Refseq database that show significant sequence homology to our sequence.
- By default, the results are sorted according to the Expect value (E-value) in ascending order. We can click on the column headers to sort the results by different categories.

equences prod	cing significant alignments:						
Click headers	to sort columns)						
Accession	Description	Max score	Total score	Query coverage	E value	Max ident	
XM_002099563.1	Drosophila yakuba GE14515 (Dyak\GE14515), mRNA	3627	7993	40%	0.0	100%	
XM 001982693.1	Drosophila erecta GG16448 (Dere\GG16448), mRNA	2955	6402	40%	0.0	94%	
NM_143665.2	Drosophila melanogaster legless (lgs), mRNA	2762	6759	48%	0.0	91%	l
XM 002043637.1	Drosophila sechellia GM26781 (Dsec\GM26781), mRNA	2064	3553	24%	0.0	91%	
XM_002105717.1	Drosophila simulans GD24381 (Dsim\GD24381), mRNA	1640	2182	15%	0.0	90%	
XM 002105716.1	Drosophila simulans GD24382 (Dsim\GD24382), mRNA	1494	2741	18%	0.0	90%	
XM_001382187.2	Drosophila pseudoobscura pseudoobscura GA15199 (Dpse\GA15199),	688	1549	33%	0.0	85%	
XM 002027015.1	Drosophila persimilis GL18147 (Dper\GL18147), mRNA	684	1564	33%	0.0	85%	
XM 001966615.1	Drosophila ananassae GF23421 (Dana\GF23421), mRNA	562	1209	28%	2e-156	81%	

Comparative sequence analysis revealed 99.0-100% sequence similarities for the 16S rRNA genes between the reference strains and target strains.

Interpreting nucleotide blast results The Graphic Display List of Significant BLAST Hits

- 1. query coverage (percent of the query sequence that overlaps the subject sequence),
- 2. max identity (percent similarity between the query and subject sequences over the length of the coverage area).

In this case, we notice that the top three hits match much better to our sequence than the remaining BLAST hits. We also see that these three database matches span almost the entire length of our Query sequence.

Interpreting nucleotide blast results What is the the minimum percentage of identity required by BLAST to tentatively determine new species of bacteria?

- Qs. Is a similarity of 16S rRNA of the unknown isolate with reference species above 97% represents a new species?
- Ans. It might be a new species. It might not be a new species.
- I6S rRNA sequences by themselves don't make it easy to define a new species as our idea of what is a species or a strain is mostly artificial anyway. If there is other evidence to suggest that your species is somehow different (like other genomic or phenotypic differences, for example) then it may complement the different 16S sequence.
- I've seen varying thresholds for what constitutes a different species or genus, anyway. I have linked a paper which suggests that 98.7 percent is the usual species cutoff. They do also note "These genetic criteria should always be accompanied by a discriminant phenotypic property".

Interpreting nucleotide blast results What is the the minimum percentage of identity required by BLAST to tentatively determine new species of bacteria?

- Qs. Is a similarity of 16S rRNA of the unknown isolate with reference species above 97% represents a new species?
- Ans.
- If you have complete sequence of 16S rRNA gene (approximately 1500 bp) and it is showing 96% similarity with type strain (not with other strain), then it should be a new species.
- The 16S RNA sequence similarity is not enough by itself to talk about a new species. To define a new species DNA-DNA hybridization is done with all the Type strains which have less than 97% similarity with your strain.

Interpreting nucleotide blast results Reading BLAST Output The Hit List or Sequence List

- Below the graphical output is a list of the top 100 sequences that matched your query, giving:
- Their reference number in the database,
- A very brief description,
- A score (the higher the score, the more similar the sequences), and
- An E value (the odds that the similarity between the query sequence and the match might have occurred purely by chance; the lower the score, the more similar the sequences).

E value decreases exponentially as the Score (S) of the match increases.

Interpreting nucleotide blast results Reading BLAST Output The Hit List

- Sequence accession number
 - Depends on the database
- Description
 - Taken from the database
- Bit score
 - **High** bit score = **good** match
- E-Value (Expect value)
- Low E-value = good match
- Links
 - Genome
 - Uniref, database of transcripts

Distance tree of results NEW. Related Structures			
Sequences producing significant alignments:	Score (Bits)	E Value	
ref[XP_516145.2] PREDICTED: hypothetical protein [Pan troglodyte	803	0.0	G
<pre>ref XP_001116949.1 PREDICTED: similar to nucleolin [Macaca mula sp Q4R4J7 NUCL MACFA Nucleolin >dbj BAE00345.1 unnamed prote</pre>	793	0.0	UG
ref NP 005372.2 nucleolin [Homo sapiens] >sp P19338 NUCL HUM sp Q5RF26 NUCL PONPY Nucleolin >emb CAH89631.1 hypothetical	744	0.0	UG
gb[AAA59954.1] nucleolin	736	0.0	G
<pre>dbj BAC03738.1 unnamed protein product [Homo sapiens]</pre>	712	0.0	UG
<pre>ref[XP_614626.2] PREDICTED: similar to nucleolin-related prot</pre>	702	0.0	UG
ref NP_072143.1 nucleolin-related protein [Rattus norvegicus	701	0.0	UG
<pre>ref[XP_850477.1] PREDICTED: similar to nucleolin-related prot</pre>	681	0.0	G
ref XP_861643.1 PREDICTED: similar to nucleolin-related prot	678	0.0	G
<pre>ref XP 861613.1 PREDICTED: similar to nucleolin-related prot sp P08199 NUCL MESAU Nucleolin (Protein C23)</pre>	678 654	0.0	G
ref NP 036881.1 nucleolin [Rattus norvegicus] >sp P13383 NUC	643	0.0	UG
gb[AAH85751.1] Nucleolin [Rattus norvegicus]	642	0.0	UG
<pre>ref XP 361582.1 PREDICTED: similar to nucleolin-related prot gb[AAA36966.1] nucleolin, C23 pir[]JR0148 nucleolin - rat</pre>	642 641 639	0.0 0.0 0.0	G
dbj BAC27474.1 unnamed protein product [Mus musculus]	637	0.0	UG
gb AAH05460.1 Nucleolin [Mus musculus]	632	2e-179	UG
<pre>ref NP_035010.3 nucleolin [Mus musculus] >sp P09405 NUCL_MOU</pre>	632	2e-179	
<pre>dbj BAE38940.1 unnamed protein product [Mus musculus]</pre>	631	4e-179	
dbj BAE36484.1 unnamed protein product [Mus musculus]	631	4e-179	
<pre>dbj BAE40448.1 unnamed protein product [Mus musculus] >dbj B</pre>	631	5e-179	
dbj BAC26311.1 unnamed protein product [Mus musculus]	628	3e-178	UG

Uniref, also known as UniProt NREF, is a set of comprehensive protein databases curated by the Universal Protein Resource consortium.

Spiegel,2007

Interpreting nucleotide blast results Reading BLAST Output E-value

- The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance when searching a database of a particular size.
- It decreases exponentially as the Score (S) of the match increases.
- Essentially, the E value describes the random background noise.
- The lower the E-value, the more "significant" a match to a database sequence is (i.e. there is a smaller probability of finding a match just by chance).
- For example, an E value of 1 assigned to a hit can be interpreted as meaning that in a database of the current size one might expect to see 1 match with a similar score simply by chance.

Interpreting nucleotide blast results Reading BLAST Output E-value

- e-values in blast results represent the probability of the alignment occurring by chance.
- It is a statistical calculation based on the quality of alignment (the score) and the size of the database.
- The lower the E-value, or the closer it is to zero, the more "significant" the match is.
- An e value of 0 is actually a rounded down probability (maybe 1e-250 or something), and is simply saying that there is (almost) no chance that alignment can occur by chance.
- 2. An e-value of 1e-3 is saying that there is a 0.001 chance that that alignment would exist in the database by chance, that is, if the database contains 10000 sequences, then you might expect that alignment to occur maybe 10 times (10000/1000=10).

Interpreting nucleotide blast results Reading BLAST Output E-value

- However, keep in mind that virtually identical short alignments have relatively high E values.
- This is because the calculation of the E value takes into account the length of the query sequence.
- These high E values make sense because shorter sequences have a higher probability of occurring in the database purely by chance.
- For more details please see the calculations in the BLAST Course.

- blastp = Compares a protein sequence with a protein database.
- If you want to find something about the function of your protein, use blastp to compare your protein with other proteins contained in the databases.
- Two of the most popular blastp online services:
- 1. NCBI (National Center for Biotechnology Information) server
- 2. Swiss EMBnet server (European Molecular Biology network)

Steps of protein sequence analysis BLAST search at GenBank

SNCBI National Center for Biotechnology Information	atabases 🔻			Search
NCBI Home Resource List (A-Z) All Resources Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature	Welcome to NCBI The National Center for Biotechno biomedical and genomic informatic About the NCBI Mission Orga Submit Deposit data or manuscripts into NCBI databases		nd health by providing access to Learn Find help documents, attend a class or watch a tutorial	Popular Resources PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene Protein PubChem
Proteins Sequence Analysis Taxonomy Training & Tutorials Variation	Develop Use NCBI APIs and code libraries to build applications	Analyze Identify an NCBI tool for your data analysis task	Research Explore NCBI research and collaborative projects	NCBI Announcements Tree Viewer version 1.12 implements new API to markup trees 14 Feb Tree Viewer version 1.12 has several improvements undates and bun fixes Interim annotation updates for the hum GRCh37p.13 and GRCh38.p10 assemblies 14 Feb Undates to the annotation of the hum

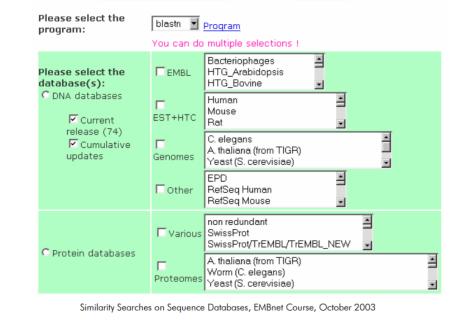
Steps of protein sequence analysis BLAST search at GenBank

Protein P	Protein Advanced			Search
QDLVSRGR DVGKKAE, VKPRVT	RKETEKTEVP EGITTKREQ AVATVVA	Protein The Protein database is a collection regions in GenBank, RefSeq and TF the fundamental determinants of bio	of sequences from several sources, inclu A, as well as records from SwissProt, PIF logical structure and function.	
Using Protein		Protein Tools	Other Resou	rces
Quick Start Guide		BLAST	GenBank Home	
FAQ		LinkOut	RefSeq Home	
Help		E-Utilities	CDD	
GenBank FTP		Blink	Structure	
		Batch Entrez		
RefSeq FTP				
You are here: NCBI > Proteins > Pr				Support Cen
You are here: NCBI > Proteins > Pr GETTING STARTED	RESOURCES	POPULAR	FEATURED	NCBI INFORMATION
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education	RESOURCES Chemicals & Bioassays	POPULAR PubMed	Genetic Testing Registry	NCBI INFORMATION About NCBI
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Help Manual	RESOURCES	POPULAR		NCBI INFORMATION
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Heip Manual NCBI Handbook	RESOURCES Chemicals & Bioassays Data & Software	POPULAR PubMed Booksheff	Genetic Testing Registry PubMed Health	NCBI INFORMATION About NCBI Research at NCBI
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Heigh Manual NCBI Handbook Training & Tutorials	RESOURCES Chemicais & Bicassays Data & Software DNA & RNA	POPULAR PubMed Bookshelf PubMed Central	Genetic Testing Registry PubMed Health GenBank	NCBI INFORMATION About NCBI Research at NCBI NCBI News
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Help Manual NCBI Hendbook Training & Tutorials	RESOURCES Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine	POPULAR PubMed Bookshelf PubMed Central PubMed Health	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Help Manual NCBI Hendbook Training & Tutorials	RESOURCES Chemicals & Bicassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps	POPULAR PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Help Manual NCBI Hendbook Training & Tutorials	RESOURCES Chemicals & Bicassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology	POPULAR PubMed Bookshelf PubMed Health BLAST Nucleotide Genome SNP	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Heigh Manual NCBI Handbook Training & Tutorials	RESOURCES Chemicals & Bicassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature	POPULAR PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome Influenza Virus	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Help Manual NCBI Hendbook Training & Tutorials	RESOURCES Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature Proteins	POPULAR PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene Protein	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome Influenza Virus Primer-BLAST	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Hedbook Training & Tutorials	RESOURCES Chemicals & Bicassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetios & Medicine Genomes & Maps Homology Literature Proteins Sequence Analysis	POPULAR PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome Influenza Virus	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
	RESOURCES Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature Proteins Sequence Analysis Taxonomy	POPULAR PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene Protein	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome Influenza Virus Primer-BLAST	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Hendbook Training & Tutorials	RESOURCES Chemicals & Bicassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetios & Medicine Genomes & Maps Homology Literature Proteins Sequence Analysis	POPULAR PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene Protein	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome Influenza Virus Primer-BLAST	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter
You are here: NCBI > Proteins > Pr GETTING STARTED NCBI Education NCBI Hedibook NCBI Handbook Training & Tutorials Submit Data	RESOURCES Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature Proteins Sequence Analysis Taxonomy Variation	POPULAR PubMed Bookshelf PubMed Gentral PubMed Health BLAST Nucleotide Genome SNP Gene Protein PubChem	Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer Human Genome Mouse Genome Influenza Virus Primer-BLAST	NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Facebook NCBI on Twitter

	protein-protein B	LAST
Nucleotide	Protein Translations Retrieve	results for an RID
<u>Search</u>	 ID/AC no. (if your sequence is alre bare sequence FASTA format 	ady in a DB) FASTA format:
Set subsequence	from: To:	>titel ASGTRCVKDQQG
Choose database	nr 🗾 🚽 Choose DB	STWGPPFRTS
Do CD-Search	v uncheck	
Now:	BLAST! or Reset query Reset all	

BLASTing p	rotein sequences: NCBI blastp server
	Formatting BLAST Protein Translations Retrieve results for an RID
	accessfully submitted and put into the Blast Queue.
Query = sp P09405 N00 The request ID is 1051696	CL_MOUSE Nucleolin (Protein C23) - Mus musculus (Mouse). (706 letters)
Format! or another	
, .	eply, DO NOT resubmit the same query several times in a row - te things worse for everybody (including you)!
	Similarity Searches on Sequence Databases, EMBnet Course, October 2003

Bordoli,2003


BLASTing protein s	equences: Swiss EMBnet blastp server
• URL: <u>http://www.ch.embne</u>	et.org/software/bBLAST.html
The EMBnet interface gives y	ou many more choices *:
sequence. Paste your sequence. Paste your sequence. field below and press the " that we can send you the	Basic BLAST witable BLAST program and database for your query uence in one of the supported <u>formats</u> into the sequence 'Run BLAST" button. Don't forget your e-mail address, so results in case of traffic jam button (next to the sequence field) shows the correct ase description.
Please select the program:	blastp 🗾 program
Please select the database: © DNA databases © Protein databases	Please select
 Gapped alignment on/off BLAST filter on/off Graphic output on/off Paste your sequence here: (or ID or accession 	blosum62 Select matrix Plain Text Select format Query title (option)
	n Sequence Databases, EMBnet Course, October 2003

BLASTing protein sequences: Swiss EMBnet blasp server Advanced BLAST

Usage: Choose the the suitable BLAST program and database for your query sequence. Paste your sequence in one of the supported <u>formats</u> into the sequence field below and press the "Run BLAST" button. Don't forget your e-mail address, so that we can send you the results in case of traffic jam...

Make sure that the format button (next to the sequence field) shows the correct format .

See also our BLAST database description and the NCBI BLAST help

Steps of protein sequence analysis BLAST search at GenBank

- Understanding your BLAST output:
- 1. Graphic display: shows you where your query is similar to other sequences.
- 2. Hit list: the name of sequences similar to your query, ranked by similarity.
- 3. The alignment: every alignment between your query and the reported hits.
- 4. The parameters: a list of the various parameters used for the search

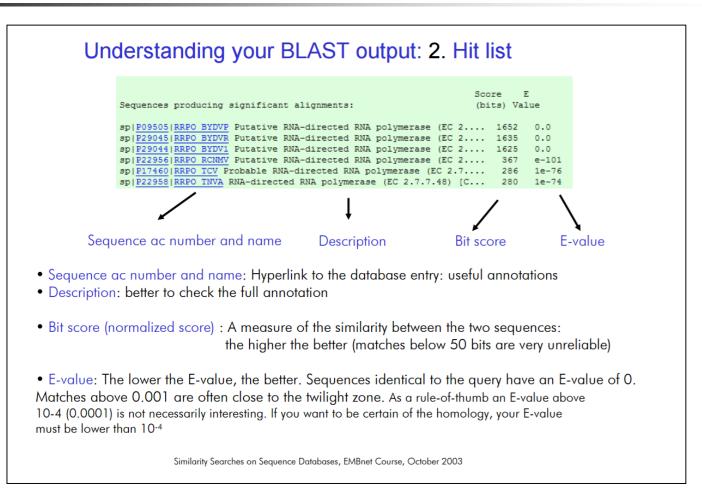
Bordoli,2003

Interpreting nucleotide blast results Reading BLAST Output

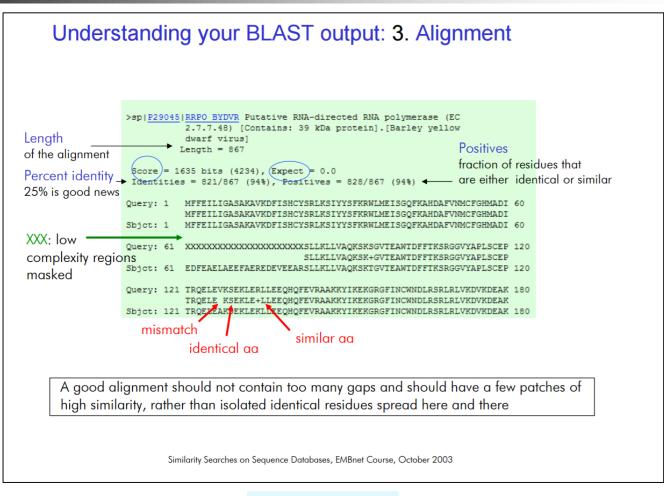
Example 3: Global alignment of two random 300 >Random seg 1


EMQSSVHIKTADYYITYFGHHFIVGEWLPNIRFPYFFWIITTDARNDMAIFNCQDETQSKKPSYNSDANNNYQYMW GCDLQEAKVTAMGNLHLWNHRGPRFQKDHACQLCEPHRGITETKRQKIDCSMNPHIPHARKHYRGLNYMYMAE NMRFIELPTEEEFWSWWDWVSWRMEMWGSDLMPEQYMRMDSWENSEQCRKHSIGRCLHYRHLNLWDDRFA QVSCFNMWWEIFPIGQRHDGYLYRVRESMIQNQDENTVCPAMFAANWQLLKEHHVRGSKEYREWFFINVWHTE GSRVAQAH

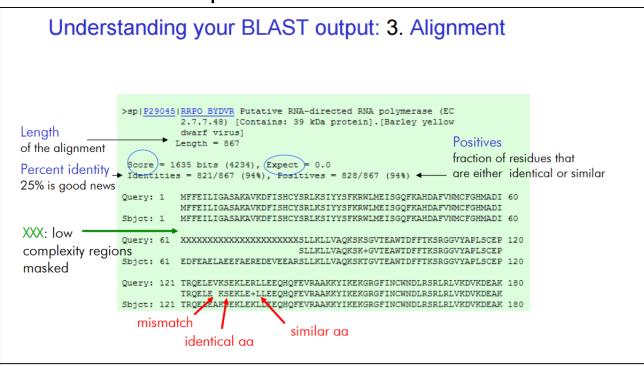
>Random seq 2


SYLTKSAIQEVCLCKVNVNDMNRFAVLGPYGFMSKGWCSVQPFHIYVPGAKKGWMMQRQCETDDLMDMTSQE DHEQYGGKRCPKCTHLLDRIAHKMAPDKMSRWGGEKQGEMFVYGDYQKYRQHKWCVHSLEHPYWNNWFALW GQCCGKQMTNPMIYRKCAKTKTCMDQAPVPSLQCQVCLCHNGSTYLTPANCCDCQVEQHESGNMGGRWIRYQ MFCVFLWKAITPKAPHFSTASKRQNKLRVQEEALQHYYNKGPLQIWPDDGWFMNRWHIILQCWYMGKFWRLH

MKCNARESEMVML	>lcl 91039 unnamed protein product 28% similar	rity
only 12% identity	→ NW Score = -118 Identities = 46/354 (12%) Fositives = 100/354 (28%), Gaps = 108/354 (30%))
		44
	sbjet 1 SYLTKSAIQEVCLCKVNVNDMNRFAVLGPYGFMSKGWCSVQPFHIYVPGAKKGWMMQRQC	60
	Query 45 RNDMAIFNCQDETQSKKPSYNSDANNNYQYMWGCDLQEAKVTAMGNLH D M + + +D 0 + P + M WG + 0 ++ G+	92
		119
For >100 aa, >25%		135
identity is required to	WN+ ++ Q+ P +R +IK C +P Sbjet 120 KYRQHKWCVHSLEHPYWNNWFALWGQCCGKQMINPMIYRKCAKIKICMDQAFVPSL	175
		186
say with almost		233
certainty that an	Query 187 RMDSWENSEQCRKHSIGRCLHYRHLNIWDDRFAQVSCFNMWWEIFPIGQRHDGYLYRVRE : +N + ++ + + L +W D DG+	246
alignment is not the		266
result of chance	Query 247 SMIQNQDENTVCPAMFAANWQLLKEHHVRGSKEYREWFFINVWHTEGSRVAQAH 300 F W ++ + G K +B N +E +	
result of chance	Sbjct 267FMNRWHIILQCWYMG-KFWRLHMKCNARESEMVML 300	


Interpreting nucleotide blast results Reading BLAST Output

Tadmor,2010



Bordoli,2003

Bordoli,2003

 A good alignment should not contain too many gaps and should have a few patches of high similarity, rather than isolated identical residues spread here and there.

Alignments

- Finally, the third data format provides a base-to-base alignment of the query sequence with each of its matches, starting from the "best match" and progressing down the list.
- This format repeats the alignment score and E value given above, but also has a measurement called "Identities".
- The identity give the number of exact matches between the your sequence and the sequence from GenBank and is presented as a fraction (the number of positions in the sequences that matched divided by the number of positions that the two sequences had in common) and as a percent.

Types of alignments Global vs. Local alignments Based on pairwise alignments

- Alignments can be global or local:
- Local alignment algorithms: Finds the region (or regions) of highest similarity between two sequences and build the alignment outward from there.
- 2. Global alignment algorithms: Start at the beginning of two sequences and add gaps to each until the end of one is reached.
- Global alignment is useful when you want to force two sequences to align over their entire length.

Programs used in global and Local alignments Pairwise alignment programs

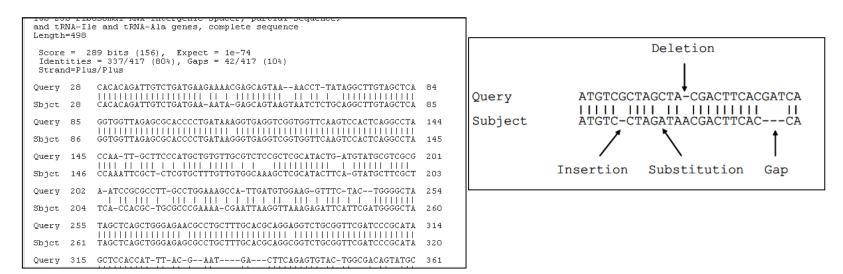
- Local Alignment Programs:
- 1. FASTA
- 2. BLAST
- e.g. of Fasta program: LALIGN
- Global Alignment Programs:
- 1. Fasta program Align
- 2. Needle. Its improved version is called Stretcher.

Multiple alignments Progressive pairwise alignments

- In theory, making an optimal alignment between two sequences is computationally straightforward, but aligning a large number of sequences using the same method is almost impossible.
- The problem increases exponentially with the number of sequences involved
 - (the product of the sequence lengths)

Programs used in multiple alignments Common multiple alignment programs

- Most of the available multiple alignment programs use some sort of incremental or progressive method that makes pairwise alignments, then adds new sequences one at a time to these aligned groups.
- CLUSTAL is the most popular alignment program that uses a progressive pairwise algorithm.
- PILEUP is the multiple alignment program in the GCG package.


BLAST Makes local sequence alignments

- BLAST is a local alignment algorithm.
 It only aligns what can be aligned
 It ignores the rest
- BLAST calculates local alignments, for databank searches and to find pairwise similarities local alignments are preferred (Pairwise Alignment).

Spiegel,2007;Peter Gogarten

BLAST Local (pairwise)alignment

- BLAST programs compare a user-entered (query) sequence with subject sequences in a database.
- It scores the match depending on the sequence identity and the number of differences between sequences such as deletions, insertions, substitutions, and gaps.

Software analysis Phylogenetic tree building at RDP

- Each bacterial sequence was subjected to software analysis (www.ebi.ac.uk and http://itol.embl.de/,....) to draw phylogenic tree.
- The Ribosomal Database Project (RDP) hosts a web site dedicated to the analysis of bacterial 16S rRNA sequences.
- You will use the tools at the RDP site to build a phylogenetic tree showing the relationship of your bacterium to some better-known and better-studied bacteria.
- The tree will group 16S rRNA genes according to sequence similarity, providing information on how your bacterium fits into the existing taxonomic framework for prokaryotes.

Moran,2010

CLUSTAL Makes multiple sequence alignments

- The most commonly used algorithm is CLUSTAL and can be performed at several websites (e.g. <u>http://www.ebi.ac.uk/clustraw/</u>
- 1. Multiple sequence alignments allows you to identify nucleotides (nucleotide bases) with identity to other sequences.
- 2. It is also the first part of the process for generating phylogenies for deriving evolutionary relationships.
- 3. It is also a useful tool to use prior to performing diagnostic PCR primers, since it allows you to identify regions of sequence that have conservations (perhaps between members of closely related species.

COST873,2008

CLUSTAL Makes multiple sequence alignments

- Clustral first calculates approximate pairwise similarity scores between all sequences to be aligned, and they are clustered into a dendrogram (tree structure).
- 2. Then the most similar pairs of sequences are aligned.
- 3. Averages (similar to consensus sequences) are calculated for the aligned pairs.
- 4. New sequences and clusters of sequences are added one by one, according to the branching order in the dendrogram.

S.M. Brown

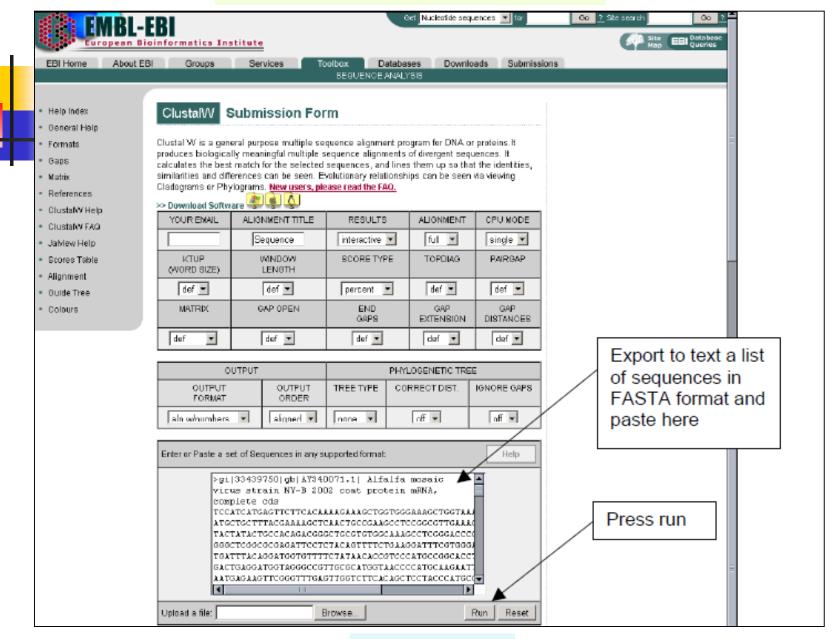
CLUSTAL Input and output formats

- Clustal requires that sequences be input as a single multi-sequence Fasta file.
- 1. Input format is a list of sequences in Fasta formats.
- 2. Output can be in many formats including:
- 3. GCG/MSF,
- 4. Clustal, and
- 5. Multi-Fasta.
- Ouputted to text and pasted into the alignment tool.

S.M. Brown;..

CLUSTAL Input files

>PYCDA07TF input_file_1


ATGCCCATACTACTCTTCTGGTAGTTGGAATGAAGCCCAAAATATGATAAAACCTTTTCT TACTAAAGTTTGTCAGGAAGTAGAAAGAATTGCTCATTGTGGAAAATGGGAAGAATGGAG TGAATGTTCTACTACTTGT

>PYCDA08TR input_file_2

>PYCDA09TRB input_file_3

S.M. Brown

CLUSTAL: Submission form

COST873,2008

The results of alignment Allows to identify conserved and divergent sequence regions

Alignment		
Show Colors View Alignment	File	
ClOSTAL 0 (1.83) multiple seq		
CLOSIAL O (L.05) BUITIPLE SEQ	sence allgmment	
gi 83778362 gb DQ314753.1	ATGAGTT CTT CACAAAAGAAAGCTGGTGGGGAAAGCTGGTAAACC 44	
g1 53776350 gb DQ314752.1	ATGAETTUTTUALAAAGAAAGUTGETGEGAAAGUTGETAAACU 44	Divergent
g1 83778368 gb DQ314756.1	ATGASTTCTTCACAAAAGAAAGCTGSTGSGAAAGCTGSTAAACC 44	Divergent
g1 83778364 gb D0314754,1	ATGAGTTCTTCACAAAAGAAAGCTGGTGGGGAAAGCTGGTAAACC 44	nucleotide
gi 33439750 gb AY340071.1	TCCATCATGAGTTCTTCACAAAAGAAAGCTGGTGGGAAAGCTGGTAAACC 50	nucleotide
g1 33439748 gb AY340070.1	TCCATCATGASTTUTTCACAAAAGAAAGCTGSTGSGAAAGCTGSTAAACU 50	positions
	••••••••	positions
gi 83778362 gb DQ314753.1	TACTANACGITUTCAGAACTATECTECTITACGCAAAECTCAACTECCER 94	
gi B3778360 gb DQ314752.1	TACTAAACOTTCTCAGAACTATECTECTTTACOCAAAECTCAACT36CGA/94	
g1 83778368 gb D0314756.1	TACTAAACGTTCTCAGAACTATECTECTTTACGCAAAGCTCAASTGCCGA 94	
g1 83778364 gb D0314754.1	TACTAAACOTTUTCAGAACTATECTECTITACGCAAAECTRAACTGSCGA 94	
g1 33439750 gb A7340071.1	TACTAAACGTTCTCAGAACTATECTECTTTACGAAAASCTCAACDECCGA 100	
g1 33439748 gb XY340070.1	TACTAAACGTTCTCAGAACTATECTECTTTACGCA GCTCAAFTCCCCGA 100	
g1 83778362 gb DQ314753.1	ABECTECEBECETTBAARGTEECEBETTGCAAARECBACBAATACTATACTS 144	
gi 83778360 gb ⊅0314752.1	AGCCTCCGGCGTTGAAAGTCCCGGTTGCAAAACCGACGAATACTATACTG 144	
gi 83778368 gb DQ314756.1	ASCOTCOSSOSTERAARGTCCOSSTTCOARARCGRACEARTACTATACTS 144	
g1 83778364 gb DQ314754.1	AGCCTCCGGCGTTGAAAGTCCCGGTTGCAAAAGCGACGAATACTATACTG 144	
g1 33439750 gb AY340071.1	AGCCTCCGGCGTTGAAAGTCCCGGTTGTAAAACCGACGAATACTATACTG 150	
gi 33439748 gb &Y340070.1	ASCCTCCSGCSTTSAAAGTCCCSGTTGT AACCGACGAATACTATACTS 150	

gi 83778362 gb ⊅Q314753.1	CCACAGACGGGGCTFTGTGTGGGGAAAGCCTCGGGGACCCCTCTGAFTCTGAG 194	
gi 83778360 gb DQ314752.1	CCACAGACGGGCTGCGTGTGGGCAAAGCCTCGGGGACCCCTCTGAGTCTGAG 194	
g1 83778368 gb DQ314756.1	CCACAGACGGGCTBTGTGTBGCAAABCCTCGBGACCCCTCTGABTCTGAB 194	
g1 83778364 gb D0314754.1	CCACAGACGGGGCTGTGTGTGGGGAAAGCCTCGGGGACCCCTCTGAGTCTGAG 194	
gi 33439750 gb AY340071.1	CCACAGACGGGCTGCGCGTGTGGCAAAGCCTCGGGACCCCTCTGAFTCTGAG Z00	1

Editing Multiple Alignments

- There are a variety of tools that can be used to modify a multiple alignment.
- These programs can be very useful in formatting and annotating an alignment for publication.
- An editor can also be used to make modifications by hand to improve biologically significant regions in a multiple alignment created by one of the automated alignment programs.

Editing Multiple Alignments BOXSHADE

- Shades by similarity.
- The alignments can be highlighted using a program such as BOXSHADE on:
- 1. <u>http://www.ch.embnet.org/software/BOX_form.html</u>
- 2. <u>http://bioweb.pasteur.fr/seqanal/interfaces/boxshad</u> <u>e.html</u>
- 3. <u>http://huge.eng.uiowa.edu/~tscheetz/sequence-analysis/examples/BoxShade/BOX_form.html</u>

Partial 16S rDNA sequence alignment *Xanthomonas* and *Stenotrophomonas* spp.

- Partial 16S rDNA sequence alignment of 13 Xanthomonas and Stenotrophomonas typestrains and seven X. translucens pv. graminis (X.t.g.) isolates.
- Shading indicates sequence differences to the X.t.g. type-strain.
- Bars mark the diagnostic PCR primer site characteristic for the X.t.g. group.
- Numbers on top denote position in the *E. coli* reference sequence.

	58	105
Stenotrophomonas maltophi	111a CAAGTCGAACGGCAGCACAG-GAGAGCTTG	TCT-CTGGGTGGCGAGTGG
X. bromi	CAAGTCGMRCGGCAGCACAGTAAGARCTTK	CTCTTATGGGTGGCGAGTGG
X. cassavae	CAAGTCGAACGGCAGCACAGTAAGAGCTTG	TCTTATGGGTGGCGAGTGG
X.oryzae pv. oryzae	CAAGTCGAACGGCAGCACAGTAAGAGCTTG	TCTTATGGGTGGCGAGTGG
X. campestris pv. campest	tris CAAGTCGAACGGCAGCACAGTAAGAGCTTG	TCTTATGGGTGGCGAGTGG
X. sacchari	CAAGTCGAMCGGCAGCACAG-GAGAGCTTG	CTCT-CTGGGTGGCGAGTGG
X. albilineans	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACCATGGGTGGCGAGTGG
X. hyacinthi	CAAGTCGAACGGCAGCACAGTGGTAGCAAT	CCATGGGTGGCGAGTGG
X. melonis	CAAGTCGAACGGCAGCACAGTGGTAGCAAT	ACC ATGGGTGGCGAGTGG
X. translucens pv. trans	lucens CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACCATGGGTGGCGAGTGG
X. translucens pv. poae	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACCATGGGTGGCGAGTGG
X. translucens pv. arrhei	natheri CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACC ATGGGTGGCGAGTGG
X.t.g. 25	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACC ATGGGTGGCGAGTGG
X. translucens pv. gramin	11s CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACCATGGGTGGCGAGTGG
X.t.g. 3	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACC ATGGGTGGCGAGTGG
X.t.g. 10	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACC ATGGGTGGCGAGTGG
X.t.g. 12	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACCATGGGTGGCGAGTGG
X.t.g. 21	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACCATGGGTGGCGAGTGG
X.t.g. 23	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACC ATGGGTGGCGAGTGG
X.t.g. 29	CAAGTCGAACGGCAGCACAGTGGTAGCAATA	ACC ATGGGTGGCGAGTGG

Editing multiple alignments Other editors

- The MACAW and SeqVu program for Macintosh and GeneDoc and DCSE for PCs are free and provide excellent editor functionality.
- Many "comprehensive" molecular biology programs include multiple alignment functions:
- MacVector, OMIGA, Vector NTI, and GeneTool/PepTool all include a built-in version of CLUSTAL.

Editing Multiple Alignments Other editors SeqVu

	Untitled 🛛 🖓 🖂
126	None Hy Id Ho Ch Id Ho
hgabaa1 1 hgababb1 1 hgabad1 1 hgabag2 1 hgabar1 1	-QPSLQDELKDNT
hgabaa1 13 hgababb1 11 hgabad1 12 hgabag2 32 hgabar1 34	
hgabaa1 30 hgababb1 27 hgabad1 39 hgabag2 61 hgabar1 67	L R PGLGERYTEYKTDIFYTSFGPYSDHDMEYTI L R PD FGG P PYDYGMRIDYASIDMYSEYNMDYTL FR PGIGG P PYNYALALEYASIDHISEANMEYTM L R PD I GYK PTLIHTDMYYNSIGPYNAINMEYTI MR PG FGG PAI PYGYDYQYESLDSISEYDMDFTM
hgabaa1 63 hgababb1 60 hgabad1 72 hgabag2 94 hgabar1 100	DYFFBQSWKDERLKFKGPMTY-LELNNLMASKI TMYFQQSWKDKRLSYSGIP-LNLTLDNRYADQL TYFLHBAWBDSRLSYNHTN-ETLGLDSRFYDKL DIFFAQMWYDBRLKFNSTIKY-LRLNSNMYGKI TLYLRHYWKDERLSFPSTNNLSMTFDGRLYKKI
hgabaa1 95 hgababb1 92 hgabad1 104 hgabag2 126 hgabar1 133	RIPDIFFHNGKKSVAHNMTMPNKLLRITEDGTL WYPDITYFLNDKKSFYHGYTYKNRMIRLHPDGTY WLPDIFIYNAKYCLYHDYTYENKLIRLQPDGYI WIPDIFFRNSKKADAHWITTPNRMLRIWNDGRY WYPDMFFYHSKRSFIHDITTDNYMLRYQPDGKY

S.M. Brown

Example of multiple sequence alignment

16S-23S rDNA intergenic spacer region of *Dickeya* strains

- Multiple sequence alignment of the most variable part of 16S-23S rDNA intergenic spacer region of *Dickeya* strains.
- Reference sequences obtained from GenBank are marked with a black bar, the *D*. *chrysanthemi* type strain is marked with bold and the reference strain obtained from potato is underlined.

Multiple sequence alignment 16S-23S rDNA intergenic spacer region of *Dickeya* strains

AATAT SACTSACAC TOOD TGAAAGO CACOO TCA	Dickeya sp. KACC10165 (AF232683)
AATATSACTSACAGTSOCTSACAGTSACAGTSACCTCA	Dickeya sp. KACC10165 (AF232682)
AAT BACTBACTBACTBACTBACTBACACBOTCA	Dickeya sp. 571 (AF373199)
AATAT SAC TAACAG TOOG TGAAAGGCACGGCTCA	Dickeya sp. 572 (AF373200)
AATAT GACTGACGG TOOD TGAAAGG CACGG TCA.	Dickeya sp. 573 (AF373201)
AATATAACTAACTAACTAACTAACACCACACACACACAC	Dickeya sp. 580 (AF373202)
AATATGACTGACCO TOOGTGAAAGGCACCOTCA	Dickeya chrysanthemi ATCC 11663 (AF232681)
AATATAACTAACAGTAACAGTAAAAAAAAAAAAAAAAAA	D s0411
AATATAACTAACTAACTAACTAACTAACTAACTAACTAA	D s053-2
AATATOACTGACGGTGACGGTGAAAGGCACGGTCAACGCTAACCTAAAACTGATTAGAGA	D w0461
AATATGAC TGACGG TGACGG TGACAGG CACGG TCAACGC TAACC TAAAAC TGATTAGAGA	D w0452
AATATGACTGACGG TOAGAGGGACGGCACGGTCA	D w0443
AATATGACTGACGGTGGGTGGAGAGGCACGGTCAACGCTAACCTAAAACTGATTAGAGA	D t042 T
AATATGACTGACGGTGGGTGAAAGGCACGGTCAACGCTAACCTAAAACTGATTAGAGA	D t0433
AATATGACTGACGGTGGGTGAAAGGCACGGTCAACGCTAACCTAAAACTGATTAGAGA	D s0432-2
AATATGACTGACGG TGACAGGCACGGCACGGCACGACGCTAACCCTAAAACTGATTAGAGA	D s0432-1
AATATOACTOACOTOACOTOAAAGOCACOOTCAACOCTAACCTAAAACTOATTAGAGA	D s0431-4
AATATGACTGACGGTGGGTGAAAGGCACGGTCAACGCTAACCTAAAACTGATTAGAGA	D s0431-2
AATATGACTGACGGTGGGGTGAAAGGCACGGTCAACGCTAACCTAAAACTGATTAGAGA	D s0426
AATATOACTOACOGTOGOTOAAAGGCACOGTCAACGCTAACCTAAAACTOATTAGAGA	D s0413
AATATGACTGACGGTGGGGTGAAAGACACGGTCG ······ACGTTAACCTAAAACTGATTAGCGA	D w04L
AATATGACTGACGGTGGGTGAAAGACACGGTCG ······ACGTTAACCTAAAACTGATTAGCGA	D w04K II
AATATGACTGACGGTGGGGTGAAAGACACGGTCGACGTTAACCTAAAACTGATTAOCGA	D w04M
AO TATOACTOACOO TOGO TO AAAO ACACOO TCO ······ ACO TTAACC TAAAACTOATTAO COA	D s053-3
AGTATGACTGACGGTGGGGTGAAAGACACGGTCGACGTTAACCTAAAACTGATTAGCGA	D s053-6
AATOACAAOACAOOTOAOTOAAAOTCACOOTCAOOOATATCCCOAAOATAACCTAAAOCTOATTAGCAA	D w0431
AATOACAAOACAAOATOAOTOAAAOTCACOOTCAGOOATATCCCOAAOATAACCTAAAOCTOATTAOCAA	D w0440
AATOACAAOACAOOTOAOTOAAAOTCACOOTCAOOOATATCCCOAAOATAACCTAAAOCTOATTAGCAA	D w0512
AATGACAAGACAGGTGAAAGTCACGGTCAGGGATATCCCCGAAGATAACCTAAAGCTGATTAGCAA	D w054

See also bacterial diagnosis file-Part 1

Laurila *et al.*,2008

Software analysis Phylogenetic Tree Building at RDP

- Use a browser to access the RDP analysis page (http://rdp.cme.msu.edu/html/analyses.html);
- Find the 'Phylip Interface' row and click on the 'run' triangle under the Small Subunit heading.
- You are now on the 'Start' page for the Phylip analysis tools.
- Brings your sequence into RDP and formats it for tree building......
- Choose the 'Distance Matrix' button from the top of the page. This takes you to a tool that will compare the sequences.
- Click on the 'Calculate Matrix' button to generates a table showing relatedness for all pairs of sequences, and these are the values that will be used to make the tree.
- Next click on 'Phylogenetic Tree'.....
- Your phylogenetic tree is generated in the main window.

Moran,2010

PHYLIP Version 3.6

- It includes programs to carry out parsimony, distance matrix methods, maximum likelihood, and other methods on a variety of types of data, including DNA and RNA sequences, protein sequences, restriction sites, 0/1 discrete characters data, gene frequencies, continuous characters and distance matrices.
- It is the most widely-distributed phylogeny package, with over 20,000 registered users, some of them satisfied.
- It competes with PAUP* to be the program responsible for the most published trees.
- It has been distributed since October, 1980 and is now celebrating its 25th anniversary, as the oldest distributed phylogeny package.
- PHYLIP is distributed at the PHYLIP web site at http://evolution.gs.washington.edu/phylip.html.

Taxonomic characterization of bacteria PCR, DNA sequencing, sequence alignment

- Sequence alignment of the 16S rRNA gene region of each isolate was performed using CLUSTALW option of the software Molecular Evolutionary Genetics Analysis (MEGA) software v4.0. (Tamura *et al.*, 2007).
- The sequences were deposited at GenBank and were subjected to a NCBI BLAST search.
- In a second alignment, the 16S rRNA gene region sequences were aligned using CLUSTALW together with the homologous sequences (retrieved from GenBank) of closely related species of bacteria.

Construction of a phylogenetic tree from the aligned sequences was created in MEGA software.

MEGA Molecular evolutionary genetics analysis

- MEGA has been updated and expanded several times and currently all these versions are available from the MEGA website. The latest release, MEGA7, has been optimized for use on 64-bit computing systems.
- Tree-making methods:
- Neighbor joining
- Minimum evolution (ME)method
- UPGMA
- Maximum parsimony
- Maximum likelihood
- Bootstrap phylogeny test
- Confidence probability test
- Distance matrix viewer

The **minimum-evolution** (ME) method of phylogenetic inference is based on the assumption that the tree with the smallest sum of branch length estimates is most likely to be the true one. Maximum parsimony and minimum evolution are methods that try to minimize branch lengths by either minimizing distance (minimum evolution) or minimizing the number of mutations (maximum parsimony). The major problem with these methods is that the fail to take into account many factors of sequence evolution (e.g. reversals, convergence, and homoplasy). Thus, the deeper the divergence times that more likely these methods will lead to erroneous or poorly supported groupings. ME method perform best in the group of distance-based methods, but they work much more slowly than NJ.

MEGA

Molecular evolutionary genetics analysis Estimates phylogeny for sequence data

- Estimates phylogeny for sequence data by computing matrix of pair-wise distances between OTUs (OTUs= aligned sequences in this case).
- 2. Phylogenetic relationships are then estimated from pair-wise distances estimates using various algorithms.
- 3. Assumes phylogenetic divergence parallels sequence divergence.
- 4. Many different types of distances available.
- 5. Distance based algorithms include:
- a. UPGMA (and variants)
- b. Fitch–Margoliash least squares
- c. Minimum evolution
- d. Neighbor-joining
- e. Weighted neighbor-joining

MEGA

Estimates phylogeny for sequence data Parsimony, likelihood and Distance-matrix methods

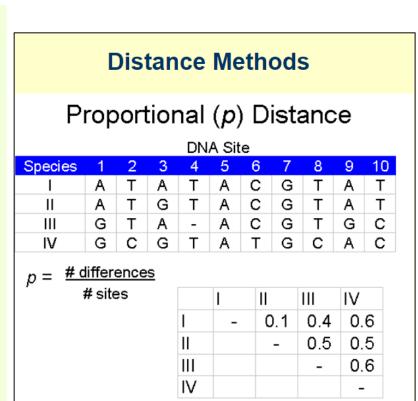
- When we infer a tree from genetic data using parsimony we minimize the amount of change along the branches of the tree.
- 2. Similarly when we use the likelihood principle we minimize change conditional on a specific mutation model.
- 3. An alternative to likelihood or parsimony is an approach based on evolutionary distances between a pair of sequences where the distance is accounting for all unseen events, for example using similar mutation models as likelihood.

Evolutionary distances between a pair of sequences Distance methods

- A variety of distance algorithms are available to calculate pairwise distance. for example Proportional (p) distances.
- Distance analysis compares two aligned sequences at a time, and builds a matrix of all possible sequence pairs.
- During each comparison, the number of changes (base substitutions and insertion/deletion events) are counted and presented as a proportion of the overall sequence length.
- These final estimates of the difference between all possible pairs of sequences are known as pairwise distances.

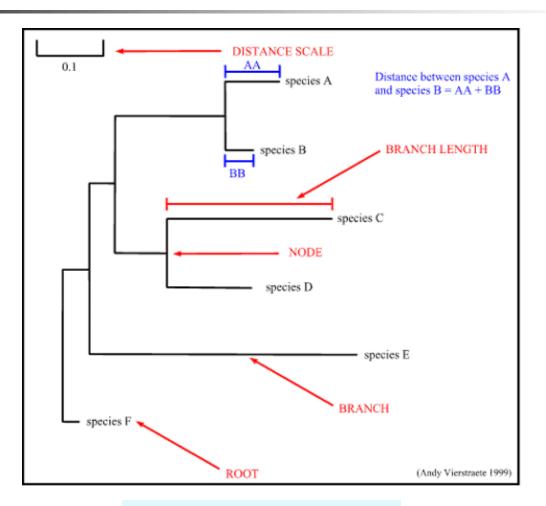
Evolutionary distances between a pair of sequences Pairwise distance methods

- Distance matrices are used in phylogeny as nonparametric distance methods and were originally applied to phenetic data using a matrix of pairwise distances.
- Pairwise methods evaluate all pairs of sequences and transform the differences into a distance.
- Pairwise distance methods are not so popular anymore because the are outperformed by likelihood methods.
- Distance is often defined as the fraction of mismatches at aligned positions, with gaps either ignored or counted as mismatches.


Evolutionary distances between a pair of sequences Pairwise distance methods

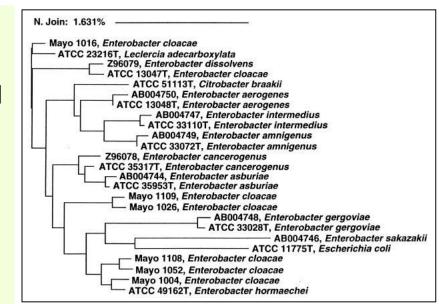
 Example of a problematic data sets for distance methods, the used distance is simply counting sites that are different between pairs.

Individual	Sequence		Individual	one	two	three	four
one	ATTAGC		one	-	1	2	3
two	ATTGGC	\rightarrow	two		-	1	2
three	ATGGGC		three			-	1
four	GTGGGC		four				-


Evolutionary distances between a pair of sequences Pairwise distance methods

- The diagram above summarizes the calculation of pairwise distances between the gene sequences for four hypothetical species.
 - The coefficients provide a simple summary of how similar (or different) each sequence is from the other.
 - Sequence I and II are more alike to each other than either is to III.
 - In this example, we calculated the distances across the length of the whole sequence (10 bases); distances can be calculated for different sections of a sequence to see if some parts are more conserved than others.
 - Such a comparison would combine the pairwise distance approach with the rule of functional constraint.
- The above example illustrates the initial calculation of the distance. Most investigators would use additional statistical techniques to correct for hidden differences (parallel and back-mutations) using a variety of evolutionary models.

https://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/P hylogenetics/phylo12.html


Phylogenetic tree A typical rooted tree with scaled branches

Phycs498BIO Assignment2

Identification of *Enterobacter* **spp.** Based on sequence analysis of different regions of the 16S rRNA gene

- Neighbor-joining analysis of DNA sequences from several *Enterobacter* spp.
- Phylogenetic analysis was based on full 16S rRNA gene sequences, and the scale reflects relative phylogenetic distance.
- Isolates with names beginning with Mayo were evaluated in this study.
- Isolates with names beginning with accession numbers were retrieved from GenBank.
- The remaining isolates, whose names begin with ATCC numbers, were type strains stored in the MicroSeq database.

Second alignment with the homologous sequences (retrieved from GenBank) of closely related species of bacteria.

- By adding your new sequence to the existing databases, scientists that discover similar 16S rRNA sequences in the future will be able to find out about your bacterium, as well as the habitat and environmental conditions under which your bacterium was isolated.
- To submit your sequences use a web browser to go to the GenBank entry page at http://www.ncbi.nlm.nih.gov/BankIt.
- Scroll down the page until you see the section shown in next Fig. showing Portion of the GenBank submission page showing how to enter the BankIt page.
- Enter the number of nucleotides in your trimmed sequence in the box and click the 'New' button.

•	Banklt GenBank Submissions by WWW
	 GenBank provides <u>annotation examples and descriptions</u> for several types of sequence submissions.
	 To prepare a New GenBank submission, enter the size in nucleotides of your contiguous DNA sequence here and press New
	For each complete submission you have made to us, you will receive by

Moran,2010

Steps of sequence analysis GenBank **Depositing sequences in GenBank**

Before submitting a request, remove any numerical digits in the query sequence or replace them with the appropriate letter codes (e.g., N for an unknown nucleotide residue or X for an unknown amino acid residue).

A	<u>Adenine</u>
G	Guanine
С	<u>Cytosine</u>
Т	<u>Thymine</u>
U	<u>Uracil</u>
R	Purine (A or G)
Y	Pyrimidine (C or T)
Z	2-Aminoadenine
N	Any nucleotide
W	Weak (A or T)
S	Strong (G or C)
М	Amino (A or C)
К	Keto (G or T)
В	Not A (G or C or T)
Н	Not G (A or C or T)
D	Not C (A or G or T)
V	Not T (A or G or C)

GenBank Depositing sequences in GenBank

- GenBank is the National Institutes of Health (NIH) genetic sequence database, a collection of all publicly available DNA sequences.
- Scientists who determine the sequences of genes (or sometimes of entire genomes) deposit the sequence information in GenBank.
- Aside from doing this as a service to the scientific community, many journals require submission of new sequence data to GenBank as a precondition to publishing a manuscript referring to the sequence.

Sequence Submission to GenBank How do we get accession number?

- Accession number (bioinformatics), a unique identifier given to a biological polymer sequence (DNA, protein) when it is submitted to a sequence database.
- Accession number (library science), the unique number given to each new acquisition as it is entered in the catalog of a library or museum.

- The web page that appears next is a BankIt entry form that assigns a unique number to your entry.
- Scroll down through the form, entering information exactly as shown in the appendix.
- After you've finished filling in the BankIt form, click the "Validate and Continue" button at the bottom.
- A series of pages will appear asking you to check for possible errors.
- Ignore the warning message about not providing a recognized organism name (your isolate doesn't have a one); just scroll to the bottom of the form and click 'Validate and Continue' again.

- When asked if you want to modify your submission regarding coding regions or other featuers, don't make any changes; select 'Submit to Genbank'.
- And when asked if you forgot to indicate a coding sequence interval in your submission, say you didn't (your gene doesn't code for a protein).
- Read these error pages carefully to make sure your submission isn't cancelled without you knowing it.

- When you the get to the final "Thank you for using Bankit" page (see what it looks like in the Appendix), your submission is complete.
- GenBank will contact you by e-mail to:
- 1. Give you a copy of your submission,
- 2. Give you the GenBank submission number assigned to your sequence, and
- 3. Show you your final submission after GenBank staff have checked/corrected the format.

- Addendum: It includes article giving additional information on earlier published research paper of the author.
- Basonym: The original epithet of a name retained in a new combination.
- Bioinformatics: Computer based analysis of data on biological sequencing of the genome of an organism to predict gene function, protein and RNA structure, genome organization and molecular bases in relation to responses of plants to microbial pathogens.
- Biovars: Stains that are differentiated by biochemical or other serological means.
- Chemotype (= chemovar or chemoform): Chemically characterized portions of morphologically indistinguishable populations.
- Chimeric sequences: Chimeras are sequences formed from two or more biological sequences joined together. Amplicons with chimeric sequences can form during PCR. Chimeras are rare with shotgun sequencing, but are common in amplicon sequencing when closely related sequences are amplified.

- Chronogram: An ultrametric tree or chronogram is a phylogenetic tree that explicitly represents evolutionary time through its branch lengths. The edge lengths represent time (so current taxa are equidistant from the root).
- Cladogram: branching diagram without branch length estimates. Cladogram displays branching information to explain the evolutionary relationships. The edge lengths do not represent anything.
- Dendrogram: a broad term for the diagrammatic representation of a phylogenetic tree.
- Ecotype: (not nomenclatural). A group of populations within a species genetically adapted to a particular ecological niche; sometimes used preceded by an hyphen to indicate a particular category of ecotype, e.g. agro-ecotype, geo-ecotype.
- The named ecotype (population adapted to a local habitat) from which sequence was obtained customarily applied to populations of *Arabidopsis thaliana*.

- Epithet: The part of a scientific name identifying the species, variety, or other subunit within a genus. see specific epithet
- Specific epithet: The Latin or latinized noun or adjective that follows the genus name in a taxonomic binomial.
- Holotype: The single specimen designated as the type of a species by the original author at the time the species name and description was published. Isotype: A duplicate specimen of the holotype.
- Holopathotype: The single strain designated by the original author as the type strain of a newly described pathovar.

- Genospecies/genomospecies/genomic species
- Groups that are phenotypically similar but genotypically different have been referred to as "genospecies," "genomospecies," or "genomic species."
- A genospecies has been defined in bacteriology as a species that can be discerned only by comparison of nucleic acids.
- If a specific genospecies cannot be differentiated from another genospecies on the basis of any known phenotypic trait, it should not be named until such a differentiating trait is found.
- Brenner *et al.*,2001, proposed that the term "genospecies" be replaced by "genomospecies."
- This would avoid confusion with the earlier definition of genospecies, which was a group of strains able to exchange genetic materials.
- The term "genomic species" is also in use: it is a group of strains with high DNA-DNA hybridization values.

- Genomospecies (genospecies):
- The phylogenetic definition of a species (genomospecies) generally would include strains with approximatively 70% or greater DNA-DNA relatedness.
- Change in rank
- All strains clustered in these six genomic species(genomospecies 1-6) be assigned to the six species:
- Dickeya zeae sp. nov.
- Dickeya dadantii sp. nov.
- Dickeya chrysanthemi comb. nov.
- Dickeya dieffenbachiae sp. nov.
- Dickeya dianthicola sp. nov.
- Dickeya paradisiaca comb. nov., respectively.

- Genomovars (Multiple genetic types):
- The term genomovar has been suggested to accommodate different DNA similarity groups within a nomenspecies.
- This term has been positively accepted by some taxonomists because it indicates that a genomic species is an integral part of a nomenspecies.
- It is suggested that genomovars encompassed in species should be numbered, and not named.
- Ultimately, genomovars could be given a formal name when a determinative phenotype is described.

Genomovars (Multiple genetic types):

- Genomovars are phenotypically similar, genotypically distinct groups of strains that share a low level of DNA hybridization and are considered distinct species, but are not given an official species name until differential diagnostic tests have been established.
- To date there are ten phylogenetically similar but genomically distinct species (genomovars) which are known as the *Burkholderia cepacia* complex.
- B. cepacia (genomovar I)
- B. multivorans (genomovar II)
- *B. cenocepacia* (genomovar III)
- B. stabilis (genomovar IV)
- *B. vietnamiensis* (genomovar V)
- B. dolosa (genomovar VI)
- B. ambifaria (genomovar VII)
- B. anthina (genomovar VIII)
- B. pyrrocinia (genomovar IX)
- *B. ubonensis* (genomovar IX)

- Isolate: An isolate is a pure culture derived from a heterogeneous, wild population of microorganisms.
- Isolate: A living culture of bacterium, fungus, virus or other microorganism obtained from a single source of infection or site, and usually accorded a unique number; when shown to be distinctive, an isolate may be considered as a strain or accorded other infraspecific designation.
- Lithotrophy: 'lithos' (rock) and 'troph' (consumer), meaning "eaters of rock". Microorganisms that use inorganic compounds as electron donors to conserve energy for growth.
- Lysotype (= lysovar): Phagotype. Formerly used for infrasubspecific populations of bacteria based on reactions to bacteriophages; a phagovar.
- **Macroevolution:** Evolution that occurs above the level of the species.
- Metagenomics: the study of genetic material recovered directly from environmental samples. The broad field may also be referred to as env ironmental genomics, ecogenomics or community genomics (See the file microbial ecology).

- Microcosm: Anything that is regarded as a world in miniature.e.g. bacterial microcosm.
- Microevolution: Evolution that occurs below the level of species.
- Morphovar (morphotype): A morphovar is a strain which is differentiated on the basis of morphological distinctions.
- Monotypic: Having only one immediately subordinate taxon; e.g. of a genus with a single validly published species.
- Monotypic genus: A genus for which a single binomial is validly published.
- Morphovar (morphotype): A morphovar is a strain which is differentiated on the basis of morphological distinctions.
- Monotypic: Having only one immediately subordinate taxon; e.g. of a genus with a single validly published species.
- Monotypic genus: A genus for which a single binomial is validly published.
- Nomenclatural type: The entity to which the name is permanently associated. The nomenclatural type is a strain for a species of subspecies, a species for a genus, a genus for higher taxa.

- **Nomenspecies** as a group that bears a binomial name.
- Neopathotype: Proposed as the pathotype only when none of the strains that were used in preparing the original description are no longer extant.
- Neotype: Proposed as a type strain only when none of the strains that were used in preparing the original description are no longer extant.
- Organotrophy: The condition of an organism obtaining its energy from organic compounds.
- Patent name: A name cited only in patent application; such names are treated as if not effectively published.
- Pathotype: Equivalent to Race. Pathologically differentiated races of fungi or bacteria (= "pathodeme"). Pathotype strains that are unsuitable because they do not reflect the pathogenic or other characteristics given in the description of the pathovar (Young *et al.*,1991a).
- Pathovarietas Nova: Abbreviated pv. nov. and used to unequivocally indicate the proposal of a new pathovar.

- Phenospecies: A group of bacteria whose phenotypic description is known and which is judged to have a rank corresponding to species; Compared with nomenspecies.
- Phylogram or phylogenetic tree: branching diagram with branch length estimates. A phylogram has additional information: the length of branches according to the amount of changes (evolutionary process. Edge lengths represent time or genetic distance.
- Phylotype: A group that is part of the same phylogenetic cluster based on the analysis of three loci/Determination uses 16S-23S ITS sequence.
- Proposal: A suggested addition or amendment to the Code or a proposal for the conservation or rejection of a name.
- Race: All genotypes of a pathogen that carry the same set of avirulence genes. Shows levels of pathogenic specialization.
- A ribosomal binding site (RBS): is a sequence on mRNA that is bound by the ribosome when initiating protein translation.
- Rejected Name: A name which must not be used to designate a taxon, listed by the Judicial Commission of the ISCP for various reasons generally related to ambiguity and confusion.

- Serovar (serotype): A serovar is a stain differentiated by serological means.
- Sequevar: A group of strains with identical or almost identical DNA sequence in three loci. E.g. in *R. solanacerum* endoglucanase gene sequence was analyzed to determine its sequevars.
- Sequence type: A group with the same allelic profile based on a MLST analysis. An allele is a variant of the DNA sequence at a given locus.
- Species: A bacterial species is "a population of cells with similar characteristics." In practice, strains that share certain type properties can be called the same species even if they differ by up to 30% in DNA variation/ molecularly two prokaryotes whose 16S rRNA sequences are greater than 97% identical are likely to be the same species.

- **Strain:** A strain is "a population of organisms that descends from a single organism (arisen from a single cell) or pure culture isolate.
- A group of bacteria derived from a single cell is called a strain;
- Closely related strains constitute a bacterial species.
- Strains within a species may differ slightly from one another in many ways.
- Different isolates may be same species but are different strains; often have slight differences.
- Lab strains may have a defined genetic difference.
- Strain is equivalent to a clone.
- The taxonomic term for any object to be classified is operational taxonomic unit (OTUs) and for most bacteriological work the OTUs will be strains.
- The term strain is also applicable to eucaryotic microorganisms, as well as to viruses.

Translational Taxonomy

- Translational Taxonomy of Bacterial Plant Pathogens, Carolee Bull,2017:
- The taxonomy of bacterial plant pathogens is complicated by the microscopic nature of bacteria, misconceptions concerning host specificity, changes in the rules of nomenclature, a lack of access to reference materials and methods, and the iterative nature of classification.
- Furthermore, differences in bacterial plant pathogens important for disease management often occur at taxonomic levels below species or subspecies and may have an additional layer of codified nomenclature.
- We use the term translational taxonomy to refer to basic research in pathogen taxonomy that informs disease management tactics.
- Translational taxonomic approaches taken to develop crop rotation strategies, deploy host resistance, and strategize biological control research will be discussed.

- **Type genus:** The generic name which is the nomenclatural type of a name in a rank between genus and family.
- **Type culture:** A strain designated as the nomenclatural type of a bacterial species or infraspecific taxon.
- Type species: The species that is the name-bearing type of a genus, or a taxon between the ranks of species and genus and which fixes the application of the name.
- Type strain: The living or permanently preserved culture which is the nomenclatural type of a species or infraspecific taxon. It is often the first strain isolated or best characterized. Kept in collections e.g., ATCC (American Type Culture Collection) maintains as frozen or freeze-dried stocks.

- Anonymous, 1958. International Code of Nomenclature of Bacteria and Viruses. Iowa State College Press, Ames, Iowa, USA.
- Anonymous, 1996. International Code of Nomenclature of Bacteria. Int. J. Syst. Bact. 16: 459-490.
- Balows, A., H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) 1992. The Prokaryotes: A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 2nd ed. Springer-Verlag. New York, NY.
- Barbieri, M. 1981. The Ribotype Theory on the Origin of Life. Journal of Theoretical Biology, 91, 545-601.
- Barbieri, M. 1985. The Semantic Theory of Evolution. Harwood Academic Publishers, London and New York.
- Bedone, S.T. Power point presentations and lecture notes.THE OHIO STATE UNIVERSITY.
- Bull, C.T., De Boer, S.H., Denny, T.P., Firrao, G., Fischer-Le Saux, M., Saddler, G.S., Scortichini, M., Stead, D.E., Takikawa, Y. and Young, J.M. 2006. Guidance for plant bacteriologists on rules for bacterial nomenclature: how to avoid common pitfalls. Plant Pathogenic Bacteria. ¹¹th International Conference Proceedings. Edinburgh, Scotland, July 10-14, 2006.
- Bull, C.T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead and Y. Takikawa. 2008. DEMYSTIFYING THE NOMENCLATURE OF BACTERIAL PLANT PATHOGENS (Invited Review). Journal of Plant Pathology 90 (3), 403-417.(http://www.isppweb. org/about_tppb.asp).

- Bull C.T., De Boer S.H., Denny T.P., Firrao G., Fischer-LeSaux M., Saddler G.S., Scortichini M., Stead D.E. and Takikawa Y., 2008. Demystifying Nomenclature of Bacterial Plant Pathogens. Journal of Plant Pathology 90: 403-417.
- Bull, C.T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead and Y. Takikawa. 2010. Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007. Journal of Plant Pathology, 92 (3), 551-592 (LETTER TO THE EDITOR).
- Bull, C.T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead and Y. Takikawa. 2012. Comprehensive List of Names of Plant Pathogenic Bacteria (2008-2010). Journal of Plant Pathology 94 (1), 21-27.
- CAB International 2002. Plant Pathologist's Pocketbook (eds J.M. Waller, J.M. Lenné and S.J. Waller), 504 pp.
- **Cohan, F.M.2002. What are bacterial species? Annu. Rev. Microbiol. 56:457-87.**
- Cohan, F.M.2006. Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos Trans R Soc Lond B Biol Sci. 361 (1475): 1985-1996.
- Cohan, F.M. and E.B. Perry. 2007. A systematics for Discovering the Fundamental Units of Bacterial Diversity. Current Biology 17, R373-R386.
- Cohen, O., Gophna, U. and T. Pupko. 2011. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol. Biol. Evol. 28, 1481-1489.
- De Queiroz, K. and J. Gauthier. 1994. Toward a phylogenetic system of biological nomenclature. Tree 9: 27-31.

- Dworkin, M., Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt (Eds.).2006. The Prokaryotes: A Handbook on the Biology of Bacteria. 7 Volume -Set- Part 1-4. Springer Science+ Business Media, Inc.
- Dye, D.W., Bradbury, J.F., Goto, M., Hayward, A.C., Lelliot, R.A., Schroth, M.N. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Review of Plant Pathology 59, 153-168.
- Euzéby J. 2005. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Validation list no. 106. International Journal of Systematic and Evolutionary Microbiology 55: 2235-2238.
- Euzéby, J.P. 1997. List of Bacterial Names with Standing in Nomenclature: a Folder Available on the Internet. International Journal of Systematic Bacteriology 47, 590-592; doi: 10.1099/00207713-47-2-590.
- Fuch *et al.*, 2001. Siderotyping A powerful tool for the characterization of pyoverdines. Current Topics in Medicinal Chemistry 1: 31-57.
- Garrity, G.M. (Editor- in- chief) 2005. Bergey's Manual of Systematic Bacteriology, second ed. Vol. 2 (Parts A, B & C; Three-Volume Set). The first volume of the 2nd edition appeared in 2001.
- Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds).2005. Bergey's Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria), Springer, New York, 2005, p. 1108.
- Gde Ley, J. The Proteobacteria: Ribosomal RNA Cistron Similarities and Bacterial Taxonomy.

- Hacker, J. and Kaper, J.B. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54:641-79.
- Holt, J. G. 1994. Bergey's Manual of Determinative Bacteriology. One vol. 9th edition, Lippincott Williams & Wilkins, 787 pages.
- Holt, J. G. (Editor-in-Chief) 1984-1989. Bergey's Manual of Systematic Bacteriology. 1st edition, 4 volumes, Williams & Wilkins, Baltimore, MD.
- Janda, J.M. and S. L. Abbott.2002. Bacterial Identification for Publication: When Is Enough Enough? J. Clin. Microbiol. 40(6): 1887-1891.
- Konstantinidis, K.T., A. Ramette, and J. M. Tiedje.2006. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci. 361(1475): 1929-1940.
- Kopac, S. and F.M. Cohan. 2011. A Theory-Based Pragmatism for Discovering and Classifying Newly Divergent Bacterial Species. In : S. M. Tibayrenc (ed.) Genetics and Evolution of Infectious Diseases. Pp.21-41. Elsevier Inc.
- Lapage, S.P., P.H.A. Sneath, E.F. Lessel, V.B.D. Skerman, H.P.R. Seeliger and W.A. Clark (1976 Revision). 1975. International Code of Nomenclature of Bacteria. American Society for Microbiology, Washington, DC, 180 pp.
- Lapage, S.P., Sneath P.H.A., Lessel, E.F., Skerman, V.B.D., Seeliger, H.P. R. and Clark, W.A. 1992. International Code of Nomenclature of Bacteria 1990 Revision Bacteriological code. American Society for Microbiology, Washington, DC, USA.
- Matzanke, F. Lecture Notes: Siderophores and Iron Metabolism Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics.47pp.

- Microbial Taxonomy Last revised: Monday, March 31,2003. Reading: Ch. 17 in text: for further details, see Microbial Diversity class notes from N. C. State Univ.
- Murray, R.G.E. and Stackebrandt, E. 1995. Taxonomic note: implementation of the provisional status *Candidatus* for incompletely described procaryotes. International Journal of Systematic Bacteriology 45: 186-187.
- Oren, A. and G. M. Garrity. 2021. Valid publication of the names of forty- two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021;71:005056 DOI 10.1099/ijsem.0.005056.
- Parkinson, N. Identifying Relatedness Between Bacterial Plant Pathogens. Parkinson_MolID_CSL_1.pdf.
- Ramos, Juan-Luis and Roger, C. Levesque (Eds.) 2006. *Pseudomonas*. Volume 4, Springer. Printed in the Netherlands.
- **Ray, T.S. 1990. Thoughts on the Synthesis of Life. 16 pp.**
- Rescott *et al.*, 2005. Microbiology- Unit Four Phylogeny of Bacteria, Prokaryotes: Bacterial Genetic Systems.
- Rossello. 2001. The species concept for prokaryotes. FEMS Microbiology Reviews 25(1): 39-67.
- Rosselló-Mora, R. 2005. Updating Prokaryotic Taxonomy. Journal of Bacteriology, September 187: 6255-6257.
- Parte, A.C. 2013. LPSN list of prokaryotic names with standing in nomenclature. Nucleic Acids Research, 42, Issue D1, D613-D616; doi: 10.1093/nar/gkt1111.

- Parte, A.C. 2018. LPSN List of of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. International Journal of Systematic and Evolutionary Microbiology, 68, 1825-1829; doi: de10.1099/ijsem.0.002786.
- Palleroni N. J. 1984. Genus I. Pseudomonas Migula 1894, in Bergey's Manual of Systematic Bacteriology, Vol. 1, eds Krieg N. R., Holt J. G. (Baltimore, MD: Williams & Wilkins;), 141-199.
- Roves, 2002. MICROBIAL EVOLUTION and SYSTEMATICS.
- Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, et al. 2015. A Higher Level Classification of All Living Organisms. PLoS ONE 10(4): e0119248. https://doi.org/10.1371/journal.pone.0119248.
- Ruggiero, M.A., D.P. Gordon, T.M. Orrell, N. Bailly, T. Bourgoin, R.C. Brusca, T. Cavalier-Smith, M.D. Guiry and P.M. Kirk.2015. Correction: A Higher Level Classification of All Living Organisms. PLoS ONE 10(6): e0130114. doi:10.1371/journal. pone.0130114.
- Saddler G.S., 2005. International Committee on Systematics of Prokaryotes. Xth International (IUMS) Congress of Bacteriology and Applied Microbiology; Minutes of the meetings, 28 and 30 July 2002, Paris, France. International Journal of Systematic and Evolutionary Microbiology 55: 533-537.
- Salemi, A. and A-M. Vandamme. 2003. The Phylogenetic Handbook- A practical approach to DNA and protein phylogeny. Cambridge Uni. Press, 399 pp.

- Schaad N.W., Postnikova E., Lacy G., M'Barck F. and Chang C.- J. 2004b. Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex, subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. -Erratum. Systematic and Applied Microbiology 27: 763.
- Schaad N.W., Postnikova E., Lacey G.H., Sechler A., Agarkova I., Stromberg P.E., Stromberg V.K. and Vidaver A.K. 2005. Reclassification of *Xanthomonas campestris* pv. *citri* (*ex* Hasse 1915) Dye 1978 forms A, B/C/D, and E as *X. smithii* subsp. *citri* (*ex* Hasse) sp. nov. nom. rev. comb. nov., *X. fuscans* subsp. *aurantifolii* (*ex* Gabriel 1989) sp. nov. nom. rev. comb. nov., and *X. alfalfae* subsp. *citrumelo*(*ex* Riker and Jones) Gabriel *et al.* 1989 sp. nov. nom. rev., *X. campestris* pv. *malvacearum* (*ex* Smith 1901) Dye 1978 as *X. smithii* subsp. *smithii* nov. comb. nom. nov., *X. campestris* pv. *alfalfae* (*ex* Riker and Jones, 1935) Dye 1978 as *X. alfalfae* subsp. *alfalfae* (*ex* Riker *et al.* 1935) sp. nov. nom. rev., and "var. fuscans" of *X. campestris* pv. *phaseoli* (*ex* Smith, 1897) Dye 1978 as *X. fuscans* subsp. *fuscans* sp. nov. Systematic and Applied Microbiology 28: 494-518.
- Schaad N.W., Postnikova E., Lacey G., Sechler A., Agarkova I., Stromberg P.E., Stromberg V.K. and Vidaver A.K. 2006. Emended classification of xanthomonad pathogens on citrus - Erratum. Systematic and Applied Microbiology 29: 690-695.
- Schalk, Isabelle J. 2006. *Pseudomonas*. Volume 4, Ramos, Juan-Luis and Roger, C. Levesque (Eds.).
- Schuster, M.L., Vidaver, A.K. and Mandel, M. 1968. A purple-pigment-producing bean wilt bacterium, *Corynebacterium flaccumfaciens* var. *violaceum*, n. var. Canadian Journal of Microbiology, 14(4), 423-427.

- Skerman, V.B.D., McGowan V. and Sneath P.H.A. 1980. Approved lists of bacterial names. International Journal of Systematic Bacteriology 30: 225-420.
- Sneath, P.H. and Sokal, R.R. 1973. Numerical Taxonomy. San Fransisco, USA: Freeman & Co.
- Sneath, P.H.A. 1984. Bacterial nomenclature. In: Krieg N.R., Holt J.G. (eds). Bergey's Manual of Systematic Bacteriology, Vol.1, pp 19-23. Williams & Wilkins, Baltimore, MD, USA.
- Sneath, P.H.A.1992. International code of nomenclature of bacteria. American Society for Microbiology, Washington, D.C.
- Sneath, P.H.A. and Brenner, D.J. 1992. "Official" Nomenclature Lists. ASM News, 58: 175.
- Sneath, P.H.A. 2003. A short history of the bacteriological code. http://www.theicsp.org/Code-history.html.
- Sneath, P.H.A. 2005. The preparation of the approved lists of bacterial names. Int. J. Syst. Evol. Microbiol. 55: 2247-2249.
- Stackebrandt, E., Frederiksen, W., Garrity, G. M. & other authors (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol., 52, 1043-1047.
- Tindall, B.J., J. Sikorski, R. A. Smibert, and N.R. Krieg. 2000. Phenotypic Characterization and the Principles of Comparative Systematics. Methods for General and Molecular Microbiology, 3rd Edition. Editors: C. A. Reddy, Terry J. Beveridge, John A. Breznak, George Marzluf, Thomas M. Schmidt, Loren R. Snyder. Book ISBN or Item Number: 978-1-55581-223-2.

- Tindall, B.J., Kämpfer, P., Euzéby, J.P., Oren, A. 2006. Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. International Journal of Systematic and Evolutionary Microbiology 56: 2715-2720.
- Tindall, B.J. 2008. Are the concepts of legitimate and illegitimate names necessary under the current International Code of Nomenclature of Bacteria? A proposal to make changes to the Code. International Journal of Systematic and Evolutionary Microbiology. 58: 1979-1986.
- Vandamme, P., B. Pot, M. Gillis, P. DE Vos, K. Kersters, and J. Swinges. 1996. Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics. Microbiological Reviews, 60: 407-438.
- Vanneste, J. L. 2000. Fire Blight: The Disease and its Causative Agent, Erwinia amylovora. CABI Publishing, New Zealand, 370 pp.
- Van Niel, C.B. 1946. The classification and natural relationships of bacteria. Cold Spring Harbor Symp 11, 285-301.
- Vidaver A.K. 1991. Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Review of Plant Pathology 70: 211-221.
- Vinatzer, B.A., Bull, C.T. 2009. The impact of genomic approaches on our understanding of diversity and taxonomy of plant pathogenic bacteria. In: Jackson R.W. (ed). Plant Pathogenic Bacteria: Genomics and Molecular Biology, pp. 37-61. Caister Academic Press, Norfolk, UK.

- Young, J.M., Dye D.W., Bradbury, J.F., Panagopoulos, C.G., Robbs, C.F., 1978. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research 21: 153-177.
- Young, J.M., Takikawa, Y., Gardan, L., Stead, D.E. 1992. Changing concepts in the taxonomy of plant pathogenic bacteria. Annual Review of Phytopathology 30, 67-105.
- Young, J. M., Saddler, G.S., Takikawa, Y., De Boer, S.H., Vauterin, .L, Gardan, L., Gvozdyak, R.I., Stead, D.E. 1996. Names of plant pathogenic bacteria 1864-1995. ISPP Subcommittee on Taxonomy of Plant Pathogenic Bacteria. Review of Plant Pathology 75, 721-763.
- Young J.M., Kuykendall L.D., Martînez-Remero E., Kerr A., Sawada H., 2001a. A revision of *Rhizobium* Frank 1889, with an emended description of the genus, and the inclusion of all species of *Agrobacterium* Conn 1942 and *Allorhizobium undicola* de Lajudie *et al.* 1998 as new combinations combinations: *Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola*, and *R. vitis*. International Journal of Systematic and Evolutionary Microbiology 51: 89-103.

- Young J.M., Bull C.T., De Boer S.H., Firrao G., Gardan L., Saddler G.E., Stead D.E., Takikawa Y., 2001c. International standards for naming pathovars of phytopathogenic bacteria. http://www.isppweb.org/about_tppb_naming.asp.
- Young J.M., Bull C.T., De Boer S.H., Firrao G., Gardan L., Saddler G.E., Stead D.E., Takikawa Y., 2004a. Names of plant pathogenic bacteria published since 1995. Report of the Taxonomy of Bacterial Plant Pathogens Committee of the International Society of Plant Pathology. http://www.isppweb.org/names_bacterial_new2004. asp.
- Young, J.M., Watson, D.R.W., Dye, D.W. 2004b. Reconsideration of Arthrobacter ilicis (Mandel et al., 1961) Collins et al. 1982 as a plant-pathogenic species. Proposal to emend the authority and description of the species. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology 54:303-305.
- Young J.M., Bull C.T., De Boer S.H., Firrao G., Gardan L., Saddler G.E., Stead D.E., Takikawa Y. 2005. Names of Plant Pathogenic Bacteria, 1864-2004. Report of the Taxonomy of Bacterial Plant Pathogens Committee of the International Society of Plant Pathology.

http://www.isppweb.org/names_bacterial_new2004.asp.

- Wiedenbeck, J. & F. M. Cohan. 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 35: 957-976.
- Woese, C. R., Fox, G. E., Zablen, L., Uchida, T., Bonen, L., Pechman, K., Lewis, B. J. & Stahl, D. 1975. Conservation of primary structure in 16S ribosomal RNA. Nature 254 (5495):83-86.
- Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74 (11): 5088-90.
- Woese CR, Fox GE. 1977. The concept of cellular evolution. J. Mol. Evol. 1977 Sep 20;10 (1):1-6.
- Woese CR, Magrum LJ. and Fox GE.1978. Archaebacteria. J. Mol. Evol. 11:245-252.
- Woese CR, Gutell R, Gupta R, HF. Noller. 1983. Detailed analysis of the higherorder structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. Dec; 47 (4): 621-669.
- Woese C, Kandler O. and M. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87 (12): 4576-9.

- Woese, C.R. 2002. On the evolution of cells. Proc Natl Acad Sci USA 99(13): 8742-7.
- Woese, C. R. 2004. A New Biology for a New Century. MMBR. June 68(2):173-86.
- Yabuuchi, E., Kosako, Y., Naka T., Suzuki, S., Yano, I., 1999. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen, and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al., 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiology and Immunology 43: 339-349.